![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgr1vtx | Structured version Visualization version GIF version |
Description: If a k-regular simple graph has only one vertex, then k must be 0. (Contributed by Alexander van der Vekens, 4-Sep-2018.) (Revised by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
rusgr1vtx | ⢠(((â¯â(Vtxâðº)) = 1 â§ ðº RegUSGraph ðŸ) â ðŸ = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbgr1vtx 28883 | . . . 4 ⢠((â¯â(Vtxâðº)) = 1 â (ðº NeighbVtx ð£) = â ) | |
2 | 1 | ralrimivw 3149 | . . 3 ⢠((â¯â(Vtxâðº)) = 1 â âð£ â (Vtxâðº)(ðº NeighbVtx ð£) = â ) |
3 | eqid 2731 | . . . 4 ⢠(Vtxâðº) = (Vtxâðº) | |
4 | 3 | rusgrpropnb 29108 | . . 3 ⢠(ðº RegUSGraph ðŸ â (ðº â USGraph â§ ðŸ â â0* â§ âð£ â (Vtxâðº)(â¯â(ðº NeighbVtx ð£)) = ðŸ)) |
5 | 2, 4 | anim12i 612 | . 2 ⢠(((â¯â(Vtxâðº)) = 1 â§ ðº RegUSGraph ðŸ) â (âð£ â (Vtxâðº)(ðº NeighbVtx ð£) = â â§ (ðº â USGraph â§ ðŸ â â0* â§ âð£ â (Vtxâðº)(â¯â(ðº NeighbVtx ð£)) = ðŸ))) |
6 | fvex 6904 | . . . . . . . 8 ⢠(Vtxâðº) â V | |
7 | rusgr1vtxlem 29112 | . . . . . . . . 9 ⢠(((âð£ â (Vtxâðº)(â¯â(ðº NeighbVtx ð£)) = ðŸ â§ âð£ â (Vtxâðº)(ðº NeighbVtx ð£) = â ) â§ ((Vtxâðº) â V â§ (â¯â(Vtxâðº)) = 1)) â ðŸ = 0) | |
8 | 7 | ex 412 | . . . . . . . 8 ⢠((âð£ â (Vtxâðº)(â¯â(ðº NeighbVtx ð£)) = ðŸ â§ âð£ â (Vtxâðº)(ðº NeighbVtx ð£) = â ) â (((Vtxâðº) â V â§ (â¯â(Vtxâðº)) = 1) â ðŸ = 0)) |
9 | 6, 8 | mpani 693 | . . . . . . 7 ⢠((âð£ â (Vtxâðº)(â¯â(ðº NeighbVtx ð£)) = ðŸ â§ âð£ â (Vtxâðº)(ðº NeighbVtx ð£) = â ) â ((â¯â(Vtxâðº)) = 1 â ðŸ = 0)) |
10 | 9 | ex 412 | . . . . . 6 ⢠(âð£ â (Vtxâðº)(â¯â(ðº NeighbVtx ð£)) = ðŸ â (âð£ â (Vtxâðº)(ðº NeighbVtx ð£) = â â ((â¯â(Vtxâðº)) = 1 â ðŸ = 0))) |
11 | 10 | 3ad2ant3 1134 | . . . . 5 ⢠((ðº â USGraph â§ ðŸ â â0* â§ âð£ â (Vtxâðº)(â¯â(ðº NeighbVtx ð£)) = ðŸ) â (âð£ â (Vtxâðº)(ðº NeighbVtx ð£) = â â ((â¯â(Vtxâðº)) = 1 â ðŸ = 0))) |
12 | 11 | com13 88 | . . . 4 ⢠((â¯â(Vtxâðº)) = 1 â (âð£ â (Vtxâðº)(ðº NeighbVtx ð£) = â â ((ðº â USGraph â§ ðŸ â â0* â§ âð£ â (Vtxâðº)(â¯â(ðº NeighbVtx ð£)) = ðŸ) â ðŸ = 0))) |
13 | 12 | impd 410 | . . 3 ⢠((â¯â(Vtxâðº)) = 1 â ((âð£ â (Vtxâðº)(ðº NeighbVtx ð£) = â â§ (ðº â USGraph â§ ðŸ â â0* â§ âð£ â (Vtxâðº)(â¯â(ðº NeighbVtx ð£)) = ðŸ)) â ðŸ = 0)) |
14 | 13 | adantr 480 | . 2 ⢠(((â¯â(Vtxâðº)) = 1 â§ ðº RegUSGraph ðŸ) â ((âð£ â (Vtxâðº)(ðº NeighbVtx ð£) = â â§ (ðº â USGraph â§ ðŸ â â0* â§ âð£ â (Vtxâðº)(â¯â(ðº NeighbVtx ð£)) = ðŸ)) â ðŸ = 0)) |
15 | 5, 14 | mpd 15 | 1 ⢠(((â¯â(Vtxâðº)) = 1 â§ ðº RegUSGraph ðŸ) â ðŸ = 0) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 â§ wa 395 â§ w3a 1086 = wceq 1540 â wcel 2105 âwral 3060 Vcvv 3473 â c0 4322 class class class wbr 5148 âcfv 6543 (class class class)co 7412 0cc0 11114 1c1 11115 â0*cxnn0 12549 â¯chash 14295 Vtxcvtx 28524 USGraphcusgr 28677 NeighbVtx cnbgr 28857 RegUSGraph crusgr 29081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-oadd 8474 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-dju 9900 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-xnn0 12550 df-z 12564 df-uz 12828 df-xadd 13098 df-fz 13490 df-hash 14296 df-edg 28576 df-uhgr 28586 df-ushgr 28587 df-upgr 28610 df-umgr 28611 df-uspgr 28678 df-usgr 28679 df-nbgr 28858 df-vtxdg 28991 df-rgr 29082 df-rusgr 29083 |
This theorem is referenced by: frgrreg 29915 |
Copyright terms: Public domain | W3C validator |