| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rusgr1vtx | Structured version Visualization version GIF version | ||
| Description: If a k-regular simple graph has only one vertex, then k must be 0. (Contributed by Alexander van der Vekens, 4-Sep-2018.) (Revised by AV, 27-Dec-2020.) |
| Ref | Expression |
|---|---|
| rusgr1vtx | ⊢ (((♯‘(Vtx‘𝐺)) = 1 ∧ 𝐺 RegUSGraph 𝐾) → 𝐾 = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbgr1vtx 29302 | . . . 4 ⊢ ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝑣) = ∅) | |
| 2 | 1 | ralrimivw 3137 | . . 3 ⊢ ((♯‘(Vtx‘𝐺)) = 1 → ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅) |
| 3 | eqid 2734 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 4 | 3 | rusgrpropnb 29528 | . . 3 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)) |
| 5 | 2, 4 | anim12i 613 | . 2 ⊢ (((♯‘(Vtx‘𝐺)) = 1 ∧ 𝐺 RegUSGraph 𝐾) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ ∧ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾))) |
| 6 | fvex 6898 | . . . . . . . 8 ⊢ (Vtx‘𝐺) ∈ V | |
| 7 | rusgr1vtxlem 29532 | . . . . . . . . 9 ⊢ (((∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅) ∧ ((Vtx‘𝐺) ∈ V ∧ (♯‘(Vtx‘𝐺)) = 1)) → 𝐾 = 0) | |
| 8 | 7 | ex 412 | . . . . . . . 8 ⊢ ((∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅) → (((Vtx‘𝐺) ∈ V ∧ (♯‘(Vtx‘𝐺)) = 1) → 𝐾 = 0)) |
| 9 | 6, 8 | mpani 696 | . . . . . . 7 ⊢ ((∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅) → ((♯‘(Vtx‘𝐺)) = 1 → 𝐾 = 0)) |
| 10 | 9 | ex 412 | . . . . . 6 ⊢ (∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ → ((♯‘(Vtx‘𝐺)) = 1 → 𝐾 = 0))) |
| 11 | 10 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ → ((♯‘(Vtx‘𝐺)) = 1 → 𝐾 = 0))) |
| 12 | 11 | com13 88 | . . . 4 ⊢ ((♯‘(Vtx‘𝐺)) = 1 → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ → ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → 𝐾 = 0))) |
| 13 | 12 | impd 410 | . . 3 ⊢ ((♯‘(Vtx‘𝐺)) = 1 → ((∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ ∧ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)) → 𝐾 = 0)) |
| 14 | 13 | adantr 480 | . 2 ⊢ (((♯‘(Vtx‘𝐺)) = 1 ∧ 𝐺 RegUSGraph 𝐾) → ((∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ ∧ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)) → 𝐾 = 0)) |
| 15 | 5, 14 | mpd 15 | 1 ⊢ (((♯‘(Vtx‘𝐺)) = 1 ∧ 𝐺 RegUSGraph 𝐾) → 𝐾 = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 Vcvv 3463 ∅c0 4313 class class class wbr 5123 ‘cfv 6540 (class class class)co 7412 0cc0 11136 1c1 11137 ℕ0*cxnn0 12581 ♯chash 14350 Vtxcvtx 28940 USGraphcusgr 29093 NeighbVtx cnbgr 29276 RegUSGraph crusgr 29501 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-dju 9922 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-n0 12509 df-xnn0 12582 df-z 12596 df-uz 12860 df-xadd 13136 df-fz 13529 df-hash 14351 df-edg 28992 df-uhgr 29002 df-ushgr 29003 df-upgr 29026 df-umgr 29027 df-uspgr 29094 df-usgr 29095 df-nbgr 29277 df-vtxdg 29411 df-rgr 29502 df-rusgr 29503 |
| This theorem is referenced by: frgrreg 30340 |
| Copyright terms: Public domain | W3C validator |