MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgr1vtx Structured version   Visualization version   GIF version

Theorem rusgr1vtx 29632
Description: If a k-regular simple graph has only one vertex, then k must be 0. (Contributed by Alexander van der Vekens, 4-Sep-2018.) (Revised by AV, 27-Dec-2020.)
Assertion
Ref Expression
rusgr1vtx (((♯‘(Vtx‘𝐺)) = 1 ∧ 𝐺 RegUSGraph 𝐾) → 𝐾 = 0)

Proof of Theorem rusgr1vtx
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 nbgr1vtx 29401 . . . 4 ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝑣) = ∅)
21ralrimivw 3150 . . 3 ((♯‘(Vtx‘𝐺)) = 1 → ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅)
3 eqid 2737 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
43rusgrpropnb 29627 . . 3 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾))
52, 4anim12i 613 . 2 (((♯‘(Vtx‘𝐺)) = 1 ∧ 𝐺 RegUSGraph 𝐾) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ ∧ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)))
6 fvex 6927 . . . . . . . 8 (Vtx‘𝐺) ∈ V
7 rusgr1vtxlem 29631 . . . . . . . . 9 (((∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅) ∧ ((Vtx‘𝐺) ∈ V ∧ (♯‘(Vtx‘𝐺)) = 1)) → 𝐾 = 0)
87ex 412 . . . . . . . 8 ((∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅) → (((Vtx‘𝐺) ∈ V ∧ (♯‘(Vtx‘𝐺)) = 1) → 𝐾 = 0))
96, 8mpani 696 . . . . . . 7 ((∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅) → ((♯‘(Vtx‘𝐺)) = 1 → 𝐾 = 0))
109ex 412 . . . . . 6 (∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ → ((♯‘(Vtx‘𝐺)) = 1 → 𝐾 = 0)))
11103ad2ant3 1136 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ → ((♯‘(Vtx‘𝐺)) = 1 → 𝐾 = 0)))
1211com13 88 . . . 4 ((♯‘(Vtx‘𝐺)) = 1 → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ → ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → 𝐾 = 0)))
1312impd 410 . . 3 ((♯‘(Vtx‘𝐺)) = 1 → ((∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ ∧ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)) → 𝐾 = 0))
1413adantr 480 . 2 (((♯‘(Vtx‘𝐺)) = 1 ∧ 𝐺 RegUSGraph 𝐾) → ((∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ ∧ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)) → 𝐾 = 0))
155, 14mpd 15 1 (((♯‘(Vtx‘𝐺)) = 1 ∧ 𝐺 RegUSGraph 𝐾) → 𝐾 = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1539  wcel 2108  wral 3061  Vcvv 3481  c0 4342   class class class wbr 5151  cfv 6569  (class class class)co 7438  0cc0 11162  1c1 11163  0*cxnn0 12606  chash 14375  Vtxcvtx 29039  USGraphcusgr 29192   NeighbVtx cnbgr 29375   RegUSGraph crusgr 29600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-2o 8515  df-oadd 8518  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-dju 9948  df-card 9986  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-n0 12534  df-xnn0 12607  df-z 12621  df-uz 12886  df-xadd 13162  df-fz 13554  df-hash 14376  df-edg 29091  df-uhgr 29101  df-ushgr 29102  df-upgr 29125  df-umgr 29126  df-uspgr 29193  df-usgr 29194  df-nbgr 29376  df-vtxdg 29510  df-rgr 29601  df-rusgr 29602
This theorem is referenced by:  frgrreg  30439
  Copyright terms: Public domain W3C validator