MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgr1vtx Structured version   Visualization version   GIF version

Theorem rusgr1vtx 27372
Description: If a k-regular simple graph has only one vertex, then k must be 0. (Contributed by Alexander van der Vekens, 4-Sep-2018.) (Revised by AV, 27-Dec-2020.)
Assertion
Ref Expression
rusgr1vtx (((♯‘(Vtx‘𝐺)) = 1 ∧ 𝐺 RegUSGraph 𝐾) → 𝐾 = 0)

Proof of Theorem rusgr1vtx
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 nbgr1vtx 27142 . . . 4 ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝑣) = ∅)
21ralrimivw 3185 . . 3 ((♯‘(Vtx‘𝐺)) = 1 → ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅)
3 eqid 2823 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
43rusgrpropnb 27367 . . 3 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾))
52, 4anim12i 614 . 2 (((♯‘(Vtx‘𝐺)) = 1 ∧ 𝐺 RegUSGraph 𝐾) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ ∧ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)))
6 fvex 6685 . . . . . . . 8 (Vtx‘𝐺) ∈ V
7 rusgr1vtxlem 27371 . . . . . . . . 9 (((∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅) ∧ ((Vtx‘𝐺) ∈ V ∧ (♯‘(Vtx‘𝐺)) = 1)) → 𝐾 = 0)
87ex 415 . . . . . . . 8 ((∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅) → (((Vtx‘𝐺) ∈ V ∧ (♯‘(Vtx‘𝐺)) = 1) → 𝐾 = 0))
96, 8mpani 694 . . . . . . 7 ((∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅) → ((♯‘(Vtx‘𝐺)) = 1 → 𝐾 = 0))
109ex 415 . . . . . 6 (∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ → ((♯‘(Vtx‘𝐺)) = 1 → 𝐾 = 0)))
11103ad2ant3 1131 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ → ((♯‘(Vtx‘𝐺)) = 1 → 𝐾 = 0)))
1211com13 88 . . . 4 ((♯‘(Vtx‘𝐺)) = 1 → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ → ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → 𝐾 = 0)))
1312impd 413 . . 3 ((♯‘(Vtx‘𝐺)) = 1 → ((∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ ∧ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)) → 𝐾 = 0))
1413adantr 483 . 2 (((♯‘(Vtx‘𝐺)) = 1 ∧ 𝐺 RegUSGraph 𝐾) → ((∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ ∧ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)) → 𝐾 = 0))
155, 14mpd 15 1 (((♯‘(Vtx‘𝐺)) = 1 ∧ 𝐺 RegUSGraph 𝐾) → 𝐾 = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  c0 4293   class class class wbr 5068  cfv 6357  (class class class)co 7158  0cc0 10539  1c1 10540  0*cxnn0 11970  chash 13693  Vtxcvtx 26783  USGraphcusgr 26936   NeighbVtx cnbgr 27116   RegUSGraph crusgr 27340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-xadd 12511  df-fz 12896  df-hash 13694  df-edg 26835  df-uhgr 26845  df-ushgr 26846  df-upgr 26869  df-umgr 26870  df-uspgr 26937  df-usgr 26938  df-nbgr 27117  df-vtxdg 27250  df-rgr 27341  df-rusgr 27342
This theorem is referenced by:  frgrreg  28175
  Copyright terms: Public domain W3C validator