MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgr1vtx Structured version   Visualization version   GIF version

Theorem rusgr1vtx 29533
Description: If a k-regular simple graph has only one vertex, then k must be 0. (Contributed by Alexander van der Vekens, 4-Sep-2018.) (Revised by AV, 27-Dec-2020.)
Assertion
Ref Expression
rusgr1vtx (((♯‘(Vtx‘𝐺)) = 1 ∧ 𝐺 RegUSGraph 𝐾) → 𝐾 = 0)

Proof of Theorem rusgr1vtx
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 nbgr1vtx 29302 . . . 4 ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝑣) = ∅)
21ralrimivw 3137 . . 3 ((♯‘(Vtx‘𝐺)) = 1 → ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅)
3 eqid 2734 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
43rusgrpropnb 29528 . . 3 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾))
52, 4anim12i 613 . 2 (((♯‘(Vtx‘𝐺)) = 1 ∧ 𝐺 RegUSGraph 𝐾) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ ∧ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)))
6 fvex 6898 . . . . . . . 8 (Vtx‘𝐺) ∈ V
7 rusgr1vtxlem 29532 . . . . . . . . 9 (((∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅) ∧ ((Vtx‘𝐺) ∈ V ∧ (♯‘(Vtx‘𝐺)) = 1)) → 𝐾 = 0)
87ex 412 . . . . . . . 8 ((∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅) → (((Vtx‘𝐺) ∈ V ∧ (♯‘(Vtx‘𝐺)) = 1) → 𝐾 = 0))
96, 8mpani 696 . . . . . . 7 ((∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅) → ((♯‘(Vtx‘𝐺)) = 1 → 𝐾 = 0))
109ex 412 . . . . . 6 (∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ → ((♯‘(Vtx‘𝐺)) = 1 → 𝐾 = 0)))
11103ad2ant3 1135 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ → ((♯‘(Vtx‘𝐺)) = 1 → 𝐾 = 0)))
1211com13 88 . . . 4 ((♯‘(Vtx‘𝐺)) = 1 → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ → ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → 𝐾 = 0)))
1312impd 410 . . 3 ((♯‘(Vtx‘𝐺)) = 1 → ((∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ ∧ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)) → 𝐾 = 0))
1413adantr 480 . 2 (((♯‘(Vtx‘𝐺)) = 1 ∧ 𝐺 RegUSGraph 𝐾) → ((∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ ∧ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)) → 𝐾 = 0))
155, 14mpd 15 1 (((♯‘(Vtx‘𝐺)) = 1 ∧ 𝐺 RegUSGraph 𝐾) → 𝐾 = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  Vcvv 3463  c0 4313   class class class wbr 5123  cfv 6540  (class class class)co 7412  0cc0 11136  1c1 11137  0*cxnn0 12581  chash 14350  Vtxcvtx 28940  USGraphcusgr 29093   NeighbVtx cnbgr 29276   RegUSGraph crusgr 29501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-dju 9922  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-nn 12248  df-2 12310  df-n0 12509  df-xnn0 12582  df-z 12596  df-uz 12860  df-xadd 13136  df-fz 13529  df-hash 14351  df-edg 28992  df-uhgr 29002  df-ushgr 29003  df-upgr 29026  df-umgr 29027  df-uspgr 29094  df-usgr 29095  df-nbgr 29277  df-vtxdg 29411  df-rgr 29502  df-rusgr 29503
This theorem is referenced by:  frgrreg  30340
  Copyright terms: Public domain W3C validator