MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnnz1 Structured version   Visualization version   GIF version

Theorem elnnz1 12168
Description: Positive integer property expressed in terms of integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
elnnz1 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁))

Proof of Theorem elnnz1
StepHypRef Expression
1 nnz 12164 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2 nnge1 11823 . . 3 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
31, 2jca 515 . 2 (𝑁 ∈ ℕ → (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁))
4 0lt1 11319 . . . . 5 0 < 1
5 0re 10800 . . . . . 6 0 ∈ ℝ
6 1re 10798 . . . . . 6 1 ∈ ℝ
7 zre 12145 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
8 ltletr 10889 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁))
95, 6, 7, 8mp3an12i 1467 . . . . 5 (𝑁 ∈ ℤ → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁))
104, 9mpani 696 . . . 4 (𝑁 ∈ ℤ → (1 ≤ 𝑁 → 0 < 𝑁))
1110imdistani 572 . . 3 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → (𝑁 ∈ ℤ ∧ 0 < 𝑁))
12 elnnz 12151 . . 3 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
1311, 12sylibr 237 . 2 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 𝑁 ∈ ℕ)
143, 13impbii 212 1 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2112   class class class wbr 5039  cr 10693  0cc0 10694  1c1 10695   < clt 10832  cle 10833  cn 11795  cz 12141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-z 12142
This theorem is referenced by:  znnnlt1  12169  nnzrab  12170  eluz2b2  12482  elfznn  13106  elfz1b  13146  flge1nn  13361  gcdcllem3  16023  4sqlem11  16471  ovolunlem1a  24347  ovoliunlem1  24353  ppinncl  26010  bcmono  26112  zabsle1  26131  gausslemma2dlem1a  26200  gausslemma2dlem4  26204  axlowdimlem16  27002  nndiffz1  30781  tgoldbachgnn  32305  poimirlem7  35470  lcmineqlem13  39732  fz1eqin  40235  lzenom  40236  dirkertrigeqlem3  43259
  Copyright terms: Public domain W3C validator