MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reeff1olem Structured version   Visualization version   GIF version

Theorem reeff1olem 24952
Description: Lemma for reeff1o 24953. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
reeff1olem ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
Distinct variable group:   𝑥,𝑈

Proof of Theorem reeff1olem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ioossicc 12815 . . 3 (0(,)𝑈) ⊆ (0[,]𝑈)
2 0re 10635 . . . . 5 0 ∈ ℝ
3 iccssre 12811 . . . . 5 ((0 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (0[,]𝑈) ⊆ ℝ)
42, 3mpan 686 . . . 4 (𝑈 ∈ ℝ → (0[,]𝑈) ⊆ ℝ)
54adantr 481 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0[,]𝑈) ⊆ ℝ)
61, 5sstrid 3981 . 2 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0(,)𝑈) ⊆ ℝ)
72a1i 11 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 0 ∈ ℝ)
8 simpl 483 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℝ)
9 0lt1 11154 . . . . 5 0 < 1
10 1re 10633 . . . . . 6 1 ∈ ℝ
11 lttr 10709 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝑈) → 0 < 𝑈))
122, 10, 11mp3an12 1444 . . . . 5 (𝑈 ∈ ℝ → ((0 < 1 ∧ 1 < 𝑈) → 0 < 𝑈))
139, 12mpani 692 . . . 4 (𝑈 ∈ ℝ → (1 < 𝑈 → 0 < 𝑈))
1413imp 407 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 0 < 𝑈)
15 ax-resscn 10586 . . . 4 ℝ ⊆ ℂ
165, 15syl6ss 3982 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0[,]𝑈) ⊆ ℂ)
17 efcn 24949 . . . 4 exp ∈ (ℂ–cn→ℂ)
1817a1i 11 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → exp ∈ (ℂ–cn→ℂ))
19 ssel2 3965 . . . . 5 (((0[,]𝑈) ⊆ ℝ ∧ 𝑦 ∈ (0[,]𝑈)) → 𝑦 ∈ ℝ)
2019reefcld 15434 . . . 4 (((0[,]𝑈) ⊆ ℝ ∧ 𝑦 ∈ (0[,]𝑈)) → (exp‘𝑦) ∈ ℝ)
215, 20sylan 580 . . 3 (((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) → (exp‘𝑦) ∈ ℝ)
22 ef0 15437 . . . . 5 (exp‘0) = 1
23 simpr 485 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 1 < 𝑈)
2422, 23eqbrtrid 5097 . . . 4 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (exp‘0) < 𝑈)
25 peano2re 10805 . . . . . 6 (𝑈 ∈ ℝ → (𝑈 + 1) ∈ ℝ)
2625adantr 481 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) ∈ ℝ)
27 reefcl 15433 . . . . . 6 (𝑈 ∈ ℝ → (exp‘𝑈) ∈ ℝ)
2827adantr 481 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (exp‘𝑈) ∈ ℝ)
29 ltp1 11472 . . . . . 6 (𝑈 ∈ ℝ → 𝑈 < (𝑈 + 1))
3029adantr 481 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 < (𝑈 + 1))
318recnd 10661 . . . . . . 7 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℂ)
32 ax-1cn 10587 . . . . . . 7 1 ∈ ℂ
33 addcom 10818 . . . . . . 7 ((𝑈 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑈 + 1) = (1 + 𝑈))
3431, 32, 33sylancl 586 . . . . . 6 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) = (1 + 𝑈))
358, 14elrpd 12421 . . . . . . 7 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℝ+)
36 efgt1p 15461 . . . . . . 7 (𝑈 ∈ ℝ+ → (1 + 𝑈) < (exp‘𝑈))
3735, 36syl 17 . . . . . 6 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (1 + 𝑈) < (exp‘𝑈))
3834, 37eqbrtrd 5084 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) < (exp‘𝑈))
398, 26, 28, 30, 38lttrd 10793 . . . 4 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 < (exp‘𝑈))
4024, 39jca 512 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ((exp‘0) < 𝑈𝑈 < (exp‘𝑈)))
417, 8, 8, 14, 16, 18, 21, 40ivth 23973 . 2 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ (0(,)𝑈)(exp‘𝑥) = 𝑈)
42 ssrexv 4037 . 2 ((0(,)𝑈) ⊆ ℝ → (∃𝑥 ∈ (0(,)𝑈)(exp‘𝑥) = 𝑈 → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈))
436, 41, 42sylc 65 1 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  wrex 3143  wss 3939   class class class wbr 5062  cfv 6351  (class class class)co 7151  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   < clt 10667  +crp 12382  (,)cioo 12731  [,]cicc 12734  expce 15408  cnccncf 23402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-fl 13155  df-seq 13363  df-exp 13423  df-fac 13627  df-bc 13656  df-hash 13684  df-shft 14419  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-limsup 14821  df-clim 14838  df-rlim 14839  df-sum 15036  df-ef 15414  df-struct 16478  df-ndx 16479  df-slot 16480  df-base 16482  df-sets 16483  df-ress 16484  df-plusg 16571  df-mulr 16572  df-starv 16573  df-sca 16574  df-vsca 16575  df-ip 16576  df-tset 16577  df-ple 16578  df-ds 16580  df-unif 16581  df-hom 16582  df-cco 16583  df-rest 16689  df-topn 16690  df-0g 16708  df-gsum 16709  df-topgen 16710  df-pt 16711  df-prds 16714  df-xrs 16768  df-qtop 16773  df-imas 16774  df-xps 16776  df-mre 16850  df-mrc 16851  df-acs 16853  df-mgm 17845  df-sgrp 17893  df-mnd 17904  df-submnd 17948  df-mulg 18158  df-cntz 18380  df-cmn 18831  df-psmet 20456  df-xmet 20457  df-met 20458  df-bl 20459  df-mopn 20460  df-fbas 20461  df-fg 20462  df-cnfld 20465  df-top 21421  df-topon 21438  df-topsp 21460  df-bases 21473  df-cld 21546  df-ntr 21547  df-cls 21548  df-nei 21625  df-lp 21663  df-perf 21664  df-cn 21754  df-cnp 21755  df-haus 21842  df-tx 22089  df-hmeo 22282  df-fil 22373  df-fm 22465  df-flim 22466  df-flf 22467  df-xms 22848  df-ms 22849  df-tms 22850  df-cncf 23404  df-limc 24382  df-dv 24383
This theorem is referenced by:  reeff1o  24953
  Copyright terms: Public domain W3C validator