![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reeff1olem | Structured version Visualization version GIF version |
Description: Lemma for reeff1o 26506. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
Ref | Expression |
---|---|
reeff1olem | ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioossicc 13470 | . . 3 ⊢ (0(,)𝑈) ⊆ (0[,]𝑈) | |
2 | 0re 11261 | . . . . 5 ⊢ 0 ∈ ℝ | |
3 | iccssre 13466 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (0[,]𝑈) ⊆ ℝ) | |
4 | 2, 3 | mpan 690 | . . . 4 ⊢ (𝑈 ∈ ℝ → (0[,]𝑈) ⊆ ℝ) |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0[,]𝑈) ⊆ ℝ) |
6 | 1, 5 | sstrid 4007 | . 2 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0(,)𝑈) ⊆ ℝ) |
7 | 2 | a1i 11 | . . 3 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 0 ∈ ℝ) |
8 | simpl 482 | . . 3 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℝ) | |
9 | 0lt1 11783 | . . . . 5 ⊢ 0 < 1 | |
10 | 1re 11259 | . . . . . 6 ⊢ 1 ∈ ℝ | |
11 | lttr 11335 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝑈) → 0 < 𝑈)) | |
12 | 2, 10, 11 | mp3an12 1450 | . . . . 5 ⊢ (𝑈 ∈ ℝ → ((0 < 1 ∧ 1 < 𝑈) → 0 < 𝑈)) |
13 | 9, 12 | mpani 696 | . . . 4 ⊢ (𝑈 ∈ ℝ → (1 < 𝑈 → 0 < 𝑈)) |
14 | 13 | imp 406 | . . 3 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 0 < 𝑈) |
15 | ax-resscn 11210 | . . . 4 ⊢ ℝ ⊆ ℂ | |
16 | 5, 15 | sstrdi 4008 | . . 3 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0[,]𝑈) ⊆ ℂ) |
17 | efcn 26502 | . . . 4 ⊢ exp ∈ (ℂ–cn→ℂ) | |
18 | 17 | a1i 11 | . . 3 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → exp ∈ (ℂ–cn→ℂ)) |
19 | ssel2 3990 | . . . . 5 ⊢ (((0[,]𝑈) ⊆ ℝ ∧ 𝑦 ∈ (0[,]𝑈)) → 𝑦 ∈ ℝ) | |
20 | 19 | reefcld 16121 | . . . 4 ⊢ (((0[,]𝑈) ⊆ ℝ ∧ 𝑦 ∈ (0[,]𝑈)) → (exp‘𝑦) ∈ ℝ) |
21 | 5, 20 | sylan 580 | . . 3 ⊢ (((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) → (exp‘𝑦) ∈ ℝ) |
22 | ef0 16124 | . . . . 5 ⊢ (exp‘0) = 1 | |
23 | simpr 484 | . . . . 5 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 1 < 𝑈) | |
24 | 22, 23 | eqbrtrid 5183 | . . . 4 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (exp‘0) < 𝑈) |
25 | peano2re 11432 | . . . . . 6 ⊢ (𝑈 ∈ ℝ → (𝑈 + 1) ∈ ℝ) | |
26 | 25 | adantr 480 | . . . . 5 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) ∈ ℝ) |
27 | reefcl 16120 | . . . . . 6 ⊢ (𝑈 ∈ ℝ → (exp‘𝑈) ∈ ℝ) | |
28 | 27 | adantr 480 | . . . . 5 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (exp‘𝑈) ∈ ℝ) |
29 | ltp1 12105 | . . . . . 6 ⊢ (𝑈 ∈ ℝ → 𝑈 < (𝑈 + 1)) | |
30 | 29 | adantr 480 | . . . . 5 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 < (𝑈 + 1)) |
31 | 8 | recnd 11287 | . . . . . . 7 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℂ) |
32 | ax-1cn 11211 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
33 | addcom 11445 | . . . . . . 7 ⊢ ((𝑈 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑈 + 1) = (1 + 𝑈)) | |
34 | 31, 32, 33 | sylancl 586 | . . . . . 6 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) = (1 + 𝑈)) |
35 | 8, 14 | elrpd 13072 | . . . . . . 7 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℝ+) |
36 | efgt1p 16148 | . . . . . . 7 ⊢ (𝑈 ∈ ℝ+ → (1 + 𝑈) < (exp‘𝑈)) | |
37 | 35, 36 | syl 17 | . . . . . 6 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (1 + 𝑈) < (exp‘𝑈)) |
38 | 34, 37 | eqbrtrd 5170 | . . . . 5 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) < (exp‘𝑈)) |
39 | 8, 26, 28, 30, 38 | lttrd 11420 | . . . 4 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 < (exp‘𝑈)) |
40 | 24, 39 | jca 511 | . . 3 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ((exp‘0) < 𝑈 ∧ 𝑈 < (exp‘𝑈))) |
41 | 7, 8, 8, 14, 16, 18, 21, 40 | ivth 25503 | . 2 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ (0(,)𝑈)(exp‘𝑥) = 𝑈) |
42 | ssrexv 4065 | . 2 ⊢ ((0(,)𝑈) ⊆ ℝ → (∃𝑥 ∈ (0(,)𝑈)(exp‘𝑥) = 𝑈 → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)) | |
43 | 6, 41, 42 | sylc 65 | 1 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 ⊆ wss 3963 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ℝcr 11152 0cc0 11153 1c1 11154 + caddc 11156 < clt 11293 ℝ+crp 13032 (,)cioo 13384 [,]cicc 13387 expce 16094 –cn→ccncf 24916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-seq 14040 df-exp 14100 df-fac 14310 df-bc 14339 df-hash 14367 df-shft 15103 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 df-rlim 15522 df-sum 15720 df-ef 16100 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-lp 23160 df-perf 23161 df-cn 23251 df-cnp 23252 df-haus 23339 df-tx 23586 df-hmeo 23779 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-xms 24346 df-ms 24347 df-tms 24348 df-cncf 24918 df-limc 25916 df-dv 25917 |
This theorem is referenced by: reeff1o 26506 |
Copyright terms: Public domain | W3C validator |