MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmlem1 Structured version   Visualization version   GIF version

Theorem prmlem1 16809
Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
prmlem1.n 𝑁 ∈ ℕ
prmlem1.gt 1 < 𝑁
prmlem1.2 ¬ 2 ∥ 𝑁
prmlem1.3 ¬ 3 ∥ 𝑁
prmlem1.lt 𝑁 < 25
Assertion
Ref Expression
prmlem1 𝑁 ∈ ℙ

Proof of Theorem prmlem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prmlem1.n . 2 𝑁 ∈ ℕ
2 prmlem1.gt . 2 1 < 𝑁
3 prmlem1.2 . 2 ¬ 2 ∥ 𝑁
4 prmlem1.3 . 2 ¬ 3 ∥ 𝑁
5 eluzelre 12593 . . . . . . . 8 (𝑥 ∈ (ℤ‘5) → 𝑥 ∈ ℝ)
65resqcld 13965 . . . . . . 7 (𝑥 ∈ (ℤ‘5) → (𝑥↑2) ∈ ℝ)
7 eluzle 12595 . . . . . . . 8 (𝑥 ∈ (ℤ‘5) → 5 ≤ 𝑥)
8 5re 12060 . . . . . . . . 9 5 ∈ ℝ
9 5nn0 12253 . . . . . . . . . 10 5 ∈ ℕ0
109nn0ge0i 12260 . . . . . . . . 9 0 ≤ 5
11 le2sq2 13854 . . . . . . . . 9 (((5 ∈ ℝ ∧ 0 ≤ 5) ∧ (𝑥 ∈ ℝ ∧ 5 ≤ 𝑥)) → (5↑2) ≤ (𝑥↑2))
128, 10, 11mpanl12 699 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 5 ≤ 𝑥) → (5↑2) ≤ (𝑥↑2))
135, 7, 12syl2anc 584 . . . . . . 7 (𝑥 ∈ (ℤ‘5) → (5↑2) ≤ (𝑥↑2))
141nnrei 11982 . . . . . . . 8 𝑁 ∈ ℝ
158resqcli 13903 . . . . . . . 8 (5↑2) ∈ ℝ
16 prmlem1.lt . . . . . . . . . 10 𝑁 < 25
17 5cn 12061 . . . . . . . . . . . 12 5 ∈ ℂ
1817sqvali 13897 . . . . . . . . . . 11 (5↑2) = (5 · 5)
19 5t5e25 12540 . . . . . . . . . . 11 (5 · 5) = 25
2018, 19eqtri 2766 . . . . . . . . . 10 (5↑2) = 25
2116, 20breqtrri 5101 . . . . . . . . 9 𝑁 < (5↑2)
22 ltletr 11067 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ (5↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((𝑁 < (5↑2) ∧ (5↑2) ≤ (𝑥↑2)) → 𝑁 < (𝑥↑2)))
2321, 22mpani 693 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ (5↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((5↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2)))
2414, 15, 23mp3an12 1450 . . . . . . 7 ((𝑥↑2) ∈ ℝ → ((5↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2)))
256, 13, 24sylc 65 . . . . . 6 (𝑥 ∈ (ℤ‘5) → 𝑁 < (𝑥↑2))
26 ltnle 11054 . . . . . . 7 ((𝑁 ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁))
2714, 6, 26sylancr 587 . . . . . 6 (𝑥 ∈ (ℤ‘5) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁))
2825, 27mpbid 231 . . . . 5 (𝑥 ∈ (ℤ‘5) → ¬ (𝑥↑2) ≤ 𝑁)
2928pm2.21d 121 . . . 4 (𝑥 ∈ (ℤ‘5) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁))
3029adantld 491 . . 3 (𝑥 ∈ (ℤ‘5) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
3130adantl 482 . 2 ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
321, 2, 3, 4, 31prmlem1a 16808 1 𝑁 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086  wcel 2106  cdif 3884  {csn 4561   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cle 11010  cn 11973  2c2 12028  3c3 12029  5c5 12031  cdc 12437  cuz 12582  cexp 13782  cdvds 15963  cprime 16376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-prm 16377
This theorem is referenced by:  5prm  16810  7prm  16812  11prm  16816  13prm  16817  17prm  16818  19prm  16819  23prm  16820
  Copyright terms: Public domain W3C validator