![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmlem1 | Structured version Visualization version GIF version |
Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
prmlem1.n | ⊢ 𝑁 ∈ ℕ |
prmlem1.gt | ⊢ 1 < 𝑁 |
prmlem1.2 | ⊢ ¬ 2 ∥ 𝑁 |
prmlem1.3 | ⊢ ¬ 3 ∥ 𝑁 |
prmlem1.lt | ⊢ 𝑁 < ;25 |
Ref | Expression |
---|---|
prmlem1 | ⊢ 𝑁 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmlem1.n | . 2 ⊢ 𝑁 ∈ ℕ | |
2 | prmlem1.gt | . 2 ⊢ 1 < 𝑁 | |
3 | prmlem1.2 | . 2 ⊢ ¬ 2 ∥ 𝑁 | |
4 | prmlem1.3 | . 2 ⊢ ¬ 3 ∥ 𝑁 | |
5 | eluzelre 12104 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘5) → 𝑥 ∈ ℝ) | |
6 | 5 | resqcld 13461 | . . . . . . 7 ⊢ (𝑥 ∈ (ℤ≥‘5) → (𝑥↑2) ∈ ℝ) |
7 | eluzle 12106 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘5) → 5 ≤ 𝑥) | |
8 | 5re 11572 | . . . . . . . . 9 ⊢ 5 ∈ ℝ | |
9 | 5nn0 11765 | . . . . . . . . . 10 ⊢ 5 ∈ ℕ0 | |
10 | 9 | nn0ge0i 11772 | . . . . . . . . 9 ⊢ 0 ≤ 5 |
11 | le2sq2 13350 | . . . . . . . . 9 ⊢ (((5 ∈ ℝ ∧ 0 ≤ 5) ∧ (𝑥 ∈ ℝ ∧ 5 ≤ 𝑥)) → (5↑2) ≤ (𝑥↑2)) | |
12 | 8, 10, 11 | mpanl12 698 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 5 ≤ 𝑥) → (5↑2) ≤ (𝑥↑2)) |
13 | 5, 7, 12 | syl2anc 584 | . . . . . . 7 ⊢ (𝑥 ∈ (ℤ≥‘5) → (5↑2) ≤ (𝑥↑2)) |
14 | 1 | nnrei 11495 | . . . . . . . 8 ⊢ 𝑁 ∈ ℝ |
15 | 8 | resqcli 13399 | . . . . . . . 8 ⊢ (5↑2) ∈ ℝ |
16 | prmlem1.lt | . . . . . . . . . 10 ⊢ 𝑁 < ;25 | |
17 | 5cn 11573 | . . . . . . . . . . . 12 ⊢ 5 ∈ ℂ | |
18 | 17 | sqvali 13393 | . . . . . . . . . . 11 ⊢ (5↑2) = (5 · 5) |
19 | 5t5e25 12051 | . . . . . . . . . . 11 ⊢ (5 · 5) = ;25 | |
20 | 18, 19 | eqtri 2819 | . . . . . . . . . 10 ⊢ (5↑2) = ;25 |
21 | 16, 20 | breqtrri 4989 | . . . . . . . . 9 ⊢ 𝑁 < (5↑2) |
22 | ltletr 10579 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ (5↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((𝑁 < (5↑2) ∧ (5↑2) ≤ (𝑥↑2)) → 𝑁 < (𝑥↑2))) | |
23 | 21, 22 | mpani 692 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℝ ∧ (5↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((5↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2))) |
24 | 14, 15, 23 | mp3an12 1443 | . . . . . . 7 ⊢ ((𝑥↑2) ∈ ℝ → ((5↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2))) |
25 | 6, 13, 24 | sylc 65 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘5) → 𝑁 < (𝑥↑2)) |
26 | ltnle 10567 | . . . . . . 7 ⊢ ((𝑁 ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁)) | |
27 | 14, 6, 26 | sylancr 587 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘5) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁)) |
28 | 25, 27 | mpbid 233 | . . . . 5 ⊢ (𝑥 ∈ (ℤ≥‘5) → ¬ (𝑥↑2) ≤ 𝑁) |
29 | 28 | pm2.21d 121 | . . . 4 ⊢ (𝑥 ∈ (ℤ≥‘5) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁)) |
30 | 29 | adantld 491 | . . 3 ⊢ (𝑥 ∈ (ℤ≥‘5) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
31 | 30 | adantl 482 | . 2 ⊢ ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ≥‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
32 | 1, 2, 3, 4, 31 | prmlem1a 16269 | 1 ⊢ 𝑁 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 ∈ wcel 2081 ∖ cdif 3856 {csn 4472 class class class wbr 4962 ‘cfv 6225 (class class class)co 7016 ℝcr 10382 0cc0 10383 1c1 10384 · cmul 10388 < clt 10521 ≤ cle 10522 ℕcn 11486 2c2 11540 3c3 11541 5c5 11543 ;cdc 11947 ℤ≥cuz 12093 ↑cexp 13279 ∥ cdvds 15440 ℙcprime 15844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 ax-pre-sup 10461 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-2o 7954 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-sup 8752 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-div 11146 df-nn 11487 df-2 11548 df-3 11549 df-4 11550 df-5 11551 df-6 11552 df-7 11553 df-8 11554 df-9 11555 df-n0 11746 df-z 11830 df-dec 11948 df-uz 12094 df-rp 12240 df-fz 12743 df-seq 13220 df-exp 13280 df-cj 14292 df-re 14293 df-im 14294 df-sqrt 14428 df-abs 14429 df-dvds 15441 df-prm 15845 |
This theorem is referenced by: 5prm 16271 7prm 16273 11prm 16277 13prm 16278 17prm 16279 19prm 16280 23prm 16281 |
Copyright terms: Public domain | W3C validator |