MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmlem1 Structured version   Visualization version   GIF version

Theorem prmlem1 17023
Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
prmlem1.n 𝑁 ∈ ℕ
prmlem1.gt 1 < 𝑁
prmlem1.2 ¬ 2 ∥ 𝑁
prmlem1.3 ¬ 3 ∥ 𝑁
prmlem1.lt 𝑁 < 25
Assertion
Ref Expression
prmlem1 𝑁 ∈ ℙ

Proof of Theorem prmlem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prmlem1.n . 2 𝑁 ∈ ℕ
2 prmlem1.gt . 2 1 < 𝑁
3 prmlem1.2 . 2 ¬ 2 ∥ 𝑁
4 prmlem1.3 . 2 ¬ 3 ∥ 𝑁
5 eluzelre 12751 . . . . . . . 8 (𝑥 ∈ (ℤ‘5) → 𝑥 ∈ ℝ)
65resqcld 14036 . . . . . . 7 (𝑥 ∈ (ℤ‘5) → (𝑥↑2) ∈ ℝ)
7 eluzle 12753 . . . . . . . 8 (𝑥 ∈ (ℤ‘5) → 5 ≤ 𝑥)
8 5re 12221 . . . . . . . . 9 5 ∈ ℝ
9 5nn0 12410 . . . . . . . . . 10 5 ∈ ℕ0
109nn0ge0i 12417 . . . . . . . . 9 0 ≤ 5
11 le2sq2 14046 . . . . . . . . 9 (((5 ∈ ℝ ∧ 0 ≤ 5) ∧ (𝑥 ∈ ℝ ∧ 5 ≤ 𝑥)) → (5↑2) ≤ (𝑥↑2))
128, 10, 11mpanl12 702 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 5 ≤ 𝑥) → (5↑2) ≤ (𝑥↑2))
135, 7, 12syl2anc 584 . . . . . . 7 (𝑥 ∈ (ℤ‘5) → (5↑2) ≤ (𝑥↑2))
141nnrei 12143 . . . . . . . 8 𝑁 ∈ ℝ
158resqcli 14097 . . . . . . . 8 (5↑2) ∈ ℝ
16 prmlem1.lt . . . . . . . . . 10 𝑁 < 25
17 5cn 12222 . . . . . . . . . . . 12 5 ∈ ℂ
1817sqvali 14091 . . . . . . . . . . 11 (5↑2) = (5 · 5)
19 5t5e25 12699 . . . . . . . . . . 11 (5 · 5) = 25
2018, 19eqtri 2756 . . . . . . . . . 10 (5↑2) = 25
2116, 20breqtrri 5122 . . . . . . . . 9 𝑁 < (5↑2)
22 ltletr 11214 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ (5↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((𝑁 < (5↑2) ∧ (5↑2) ≤ (𝑥↑2)) → 𝑁 < (𝑥↑2)))
2321, 22mpani 696 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ (5↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((5↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2)))
2414, 15, 23mp3an12 1453 . . . . . . 7 ((𝑥↑2) ∈ ℝ → ((5↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2)))
256, 13, 24sylc 65 . . . . . 6 (𝑥 ∈ (ℤ‘5) → 𝑁 < (𝑥↑2))
26 ltnle 11201 . . . . . . 7 ((𝑁 ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁))
2714, 6, 26sylancr 587 . . . . . 6 (𝑥 ∈ (ℤ‘5) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁))
2825, 27mpbid 232 . . . . 5 (𝑥 ∈ (ℤ‘5) → ¬ (𝑥↑2) ≤ 𝑁)
2928pm2.21d 121 . . . 4 (𝑥 ∈ (ℤ‘5) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁))
3029adantld 490 . . 3 (𝑥 ∈ (ℤ‘5) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
3130adantl 481 . 2 ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
321, 2, 3, 4, 31prmlem1a 17022 1 𝑁 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2113  cdif 3895  {csn 4577   class class class wbr 5095  cfv 6488  (class class class)co 7354  cr 11014  0cc0 11015  1c1 11016   · cmul 11020   < clt 11155  cle 11156  cn 12134  2c2 12189  3c3 12190  5c5 12192  cdc 12596  cuz 12740  cexp 13972  cdvds 16167  cprime 16586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-rp 12895  df-fz 13412  df-seq 13913  df-exp 13973  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-dvds 16168  df-prm 16587
This theorem is referenced by:  5prm  17024  7prm  17026  11prm  17030  13prm  17031  17prm  17032  19prm  17033  23prm  17034
  Copyright terms: Public domain W3C validator