| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmlem1 | Structured version Visualization version GIF version | ||
| Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| prmlem1.n | ⊢ 𝑁 ∈ ℕ |
| prmlem1.gt | ⊢ 1 < 𝑁 |
| prmlem1.2 | ⊢ ¬ 2 ∥ 𝑁 |
| prmlem1.3 | ⊢ ¬ 3 ∥ 𝑁 |
| prmlem1.lt | ⊢ 𝑁 < ;25 |
| Ref | Expression |
|---|---|
| prmlem1 | ⊢ 𝑁 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmlem1.n | . 2 ⊢ 𝑁 ∈ ℕ | |
| 2 | prmlem1.gt | . 2 ⊢ 1 < 𝑁 | |
| 3 | prmlem1.2 | . 2 ⊢ ¬ 2 ∥ 𝑁 | |
| 4 | prmlem1.3 | . 2 ⊢ ¬ 3 ∥ 𝑁 | |
| 5 | eluzelre 12743 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘5) → 𝑥 ∈ ℝ) | |
| 6 | 5 | resqcld 14032 | . . . . . . 7 ⊢ (𝑥 ∈ (ℤ≥‘5) → (𝑥↑2) ∈ ℝ) |
| 7 | eluzle 12745 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘5) → 5 ≤ 𝑥) | |
| 8 | 5re 12212 | . . . . . . . . 9 ⊢ 5 ∈ ℝ | |
| 9 | 5nn0 12401 | . . . . . . . . . 10 ⊢ 5 ∈ ℕ0 | |
| 10 | 9 | nn0ge0i 12408 | . . . . . . . . 9 ⊢ 0 ≤ 5 |
| 11 | le2sq2 14042 | . . . . . . . . 9 ⊢ (((5 ∈ ℝ ∧ 0 ≤ 5) ∧ (𝑥 ∈ ℝ ∧ 5 ≤ 𝑥)) → (5↑2) ≤ (𝑥↑2)) | |
| 12 | 8, 10, 11 | mpanl12 702 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 5 ≤ 𝑥) → (5↑2) ≤ (𝑥↑2)) |
| 13 | 5, 7, 12 | syl2anc 584 | . . . . . . 7 ⊢ (𝑥 ∈ (ℤ≥‘5) → (5↑2) ≤ (𝑥↑2)) |
| 14 | 1 | nnrei 12134 | . . . . . . . 8 ⊢ 𝑁 ∈ ℝ |
| 15 | 8 | resqcli 14093 | . . . . . . . 8 ⊢ (5↑2) ∈ ℝ |
| 16 | prmlem1.lt | . . . . . . . . . 10 ⊢ 𝑁 < ;25 | |
| 17 | 5cn 12213 | . . . . . . . . . . . 12 ⊢ 5 ∈ ℂ | |
| 18 | 17 | sqvali 14087 | . . . . . . . . . . 11 ⊢ (5↑2) = (5 · 5) |
| 19 | 5t5e25 12691 | . . . . . . . . . . 11 ⊢ (5 · 5) = ;25 | |
| 20 | 18, 19 | eqtri 2754 | . . . . . . . . . 10 ⊢ (5↑2) = ;25 |
| 21 | 16, 20 | breqtrri 5118 | . . . . . . . . 9 ⊢ 𝑁 < (5↑2) |
| 22 | ltletr 11205 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ (5↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((𝑁 < (5↑2) ∧ (5↑2) ≤ (𝑥↑2)) → 𝑁 < (𝑥↑2))) | |
| 23 | 21, 22 | mpani 696 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℝ ∧ (5↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((5↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2))) |
| 24 | 14, 15, 23 | mp3an12 1453 | . . . . . . 7 ⊢ ((𝑥↑2) ∈ ℝ → ((5↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2))) |
| 25 | 6, 13, 24 | sylc 65 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘5) → 𝑁 < (𝑥↑2)) |
| 26 | ltnle 11192 | . . . . . . 7 ⊢ ((𝑁 ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁)) | |
| 27 | 14, 6, 26 | sylancr 587 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘5) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁)) |
| 28 | 25, 27 | mpbid 232 | . . . . 5 ⊢ (𝑥 ∈ (ℤ≥‘5) → ¬ (𝑥↑2) ≤ 𝑁) |
| 29 | 28 | pm2.21d 121 | . . . 4 ⊢ (𝑥 ∈ (ℤ≥‘5) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁)) |
| 30 | 29 | adantld 490 | . . 3 ⊢ (𝑥 ∈ (ℤ≥‘5) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
| 31 | 30 | adantl 481 | . 2 ⊢ ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ≥‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
| 32 | 1, 2, 3, 4, 31 | prmlem1a 17018 | 1 ⊢ 𝑁 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ∖ cdif 3899 {csn 4576 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 · cmul 11011 < clt 11146 ≤ cle 11147 ℕcn 12125 2c2 12180 3c3 12181 5c5 12183 ;cdc 12588 ℤ≥cuz 12732 ↑cexp 13968 ∥ cdvds 16163 ℙcprime 16582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fz 13408 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-prm 16583 |
| This theorem is referenced by: 5prm 17020 7prm 17022 11prm 17026 13prm 17027 17prm 17028 19prm 17029 23prm 17030 |
| Copyright terms: Public domain | W3C validator |