| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmlem1 | Structured version Visualization version GIF version | ||
| Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| prmlem1.n | ⊢ 𝑁 ∈ ℕ |
| prmlem1.gt | ⊢ 1 < 𝑁 |
| prmlem1.2 | ⊢ ¬ 2 ∥ 𝑁 |
| prmlem1.3 | ⊢ ¬ 3 ∥ 𝑁 |
| prmlem1.lt | ⊢ 𝑁 < ;25 |
| Ref | Expression |
|---|---|
| prmlem1 | ⊢ 𝑁 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmlem1.n | . 2 ⊢ 𝑁 ∈ ℕ | |
| 2 | prmlem1.gt | . 2 ⊢ 1 < 𝑁 | |
| 3 | prmlem1.2 | . 2 ⊢ ¬ 2 ∥ 𝑁 | |
| 4 | prmlem1.3 | . 2 ⊢ ¬ 3 ∥ 𝑁 | |
| 5 | eluzelre 12868 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘5) → 𝑥 ∈ ℝ) | |
| 6 | 5 | resqcld 14148 | . . . . . . 7 ⊢ (𝑥 ∈ (ℤ≥‘5) → (𝑥↑2) ∈ ℝ) |
| 7 | eluzle 12870 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘5) → 5 ≤ 𝑥) | |
| 8 | 5re 12332 | . . . . . . . . 9 ⊢ 5 ∈ ℝ | |
| 9 | 5nn0 12526 | . . . . . . . . . 10 ⊢ 5 ∈ ℕ0 | |
| 10 | 9 | nn0ge0i 12533 | . . . . . . . . 9 ⊢ 0 ≤ 5 |
| 11 | le2sq2 14158 | . . . . . . . . 9 ⊢ (((5 ∈ ℝ ∧ 0 ≤ 5) ∧ (𝑥 ∈ ℝ ∧ 5 ≤ 𝑥)) → (5↑2) ≤ (𝑥↑2)) | |
| 12 | 8, 10, 11 | mpanl12 702 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 5 ≤ 𝑥) → (5↑2) ≤ (𝑥↑2)) |
| 13 | 5, 7, 12 | syl2anc 584 | . . . . . . 7 ⊢ (𝑥 ∈ (ℤ≥‘5) → (5↑2) ≤ (𝑥↑2)) |
| 14 | 1 | nnrei 12254 | . . . . . . . 8 ⊢ 𝑁 ∈ ℝ |
| 15 | 8 | resqcli 14209 | . . . . . . . 8 ⊢ (5↑2) ∈ ℝ |
| 16 | prmlem1.lt | . . . . . . . . . 10 ⊢ 𝑁 < ;25 | |
| 17 | 5cn 12333 | . . . . . . . . . . . 12 ⊢ 5 ∈ ℂ | |
| 18 | 17 | sqvali 14203 | . . . . . . . . . . 11 ⊢ (5↑2) = (5 · 5) |
| 19 | 5t5e25 12816 | . . . . . . . . . . 11 ⊢ (5 · 5) = ;25 | |
| 20 | 18, 19 | eqtri 2759 | . . . . . . . . . 10 ⊢ (5↑2) = ;25 |
| 21 | 16, 20 | breqtrri 5151 | . . . . . . . . 9 ⊢ 𝑁 < (5↑2) |
| 22 | ltletr 11332 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ (5↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((𝑁 < (5↑2) ∧ (5↑2) ≤ (𝑥↑2)) → 𝑁 < (𝑥↑2))) | |
| 23 | 21, 22 | mpani 696 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℝ ∧ (5↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((5↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2))) |
| 24 | 14, 15, 23 | mp3an12 1453 | . . . . . . 7 ⊢ ((𝑥↑2) ∈ ℝ → ((5↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2))) |
| 25 | 6, 13, 24 | sylc 65 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘5) → 𝑁 < (𝑥↑2)) |
| 26 | ltnle 11319 | . . . . . . 7 ⊢ ((𝑁 ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁)) | |
| 27 | 14, 6, 26 | sylancr 587 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘5) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁)) |
| 28 | 25, 27 | mpbid 232 | . . . . 5 ⊢ (𝑥 ∈ (ℤ≥‘5) → ¬ (𝑥↑2) ≤ 𝑁) |
| 29 | 28 | pm2.21d 121 | . . . 4 ⊢ (𝑥 ∈ (ℤ≥‘5) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁)) |
| 30 | 29 | adantld 490 | . . 3 ⊢ (𝑥 ∈ (ℤ≥‘5) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
| 31 | 30 | adantl 481 | . 2 ⊢ ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ≥‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
| 32 | 1, 2, 3, 4, 31 | prmlem1a 17131 | 1 ⊢ 𝑁 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∖ cdif 3928 {csn 4606 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ℝcr 11133 0cc0 11134 1c1 11135 · cmul 11139 < clt 11274 ≤ cle 11275 ℕcn 12245 2c2 12300 3c3 12301 5c5 12303 ;cdc 12713 ℤ≥cuz 12857 ↑cexp 14084 ∥ cdvds 16277 ℙcprime 16695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-rp 13014 df-fz 13530 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-dvds 16278 df-prm 16696 |
| This theorem is referenced by: 5prm 17133 7prm 17135 11prm 17139 13prm 17140 17prm 17141 19prm 17142 23prm 17143 |
| Copyright terms: Public domain | W3C validator |