MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmlem1 Structured version   Visualization version   GIF version

Theorem prmlem1 17078
Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
prmlem1.n 𝑁 ∈ ℕ
prmlem1.gt 1 < 𝑁
prmlem1.2 ¬ 2 ∥ 𝑁
prmlem1.3 ¬ 3 ∥ 𝑁
prmlem1.lt 𝑁 < 25
Assertion
Ref Expression
prmlem1 𝑁 ∈ ℙ

Proof of Theorem prmlem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prmlem1.n . 2 𝑁 ∈ ℕ
2 prmlem1.gt . 2 1 < 𝑁
3 prmlem1.2 . 2 ¬ 2 ∥ 𝑁
4 prmlem1.3 . 2 ¬ 3 ∥ 𝑁
5 eluzelre 12804 . . . . . . . 8 (𝑥 ∈ (ℤ‘5) → 𝑥 ∈ ℝ)
65resqcld 14090 . . . . . . 7 (𝑥 ∈ (ℤ‘5) → (𝑥↑2) ∈ ℝ)
7 eluzle 12806 . . . . . . . 8 (𝑥 ∈ (ℤ‘5) → 5 ≤ 𝑥)
8 5re 12273 . . . . . . . . 9 5 ∈ ℝ
9 5nn0 12462 . . . . . . . . . 10 5 ∈ ℕ0
109nn0ge0i 12469 . . . . . . . . 9 0 ≤ 5
11 le2sq2 14100 . . . . . . . . 9 (((5 ∈ ℝ ∧ 0 ≤ 5) ∧ (𝑥 ∈ ℝ ∧ 5 ≤ 𝑥)) → (5↑2) ≤ (𝑥↑2))
128, 10, 11mpanl12 702 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 5 ≤ 𝑥) → (5↑2) ≤ (𝑥↑2))
135, 7, 12syl2anc 584 . . . . . . 7 (𝑥 ∈ (ℤ‘5) → (5↑2) ≤ (𝑥↑2))
141nnrei 12195 . . . . . . . 8 𝑁 ∈ ℝ
158resqcli 14151 . . . . . . . 8 (5↑2) ∈ ℝ
16 prmlem1.lt . . . . . . . . . 10 𝑁 < 25
17 5cn 12274 . . . . . . . . . . . 12 5 ∈ ℂ
1817sqvali 14145 . . . . . . . . . . 11 (5↑2) = (5 · 5)
19 5t5e25 12752 . . . . . . . . . . 11 (5 · 5) = 25
2018, 19eqtri 2752 . . . . . . . . . 10 (5↑2) = 25
2116, 20breqtrri 5134 . . . . . . . . 9 𝑁 < (5↑2)
22 ltletr 11266 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ (5↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((𝑁 < (5↑2) ∧ (5↑2) ≤ (𝑥↑2)) → 𝑁 < (𝑥↑2)))
2321, 22mpani 696 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ (5↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((5↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2)))
2414, 15, 23mp3an12 1453 . . . . . . 7 ((𝑥↑2) ∈ ℝ → ((5↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2)))
256, 13, 24sylc 65 . . . . . 6 (𝑥 ∈ (ℤ‘5) → 𝑁 < (𝑥↑2))
26 ltnle 11253 . . . . . . 7 ((𝑁 ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁))
2714, 6, 26sylancr 587 . . . . . 6 (𝑥 ∈ (ℤ‘5) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁))
2825, 27mpbid 232 . . . . 5 (𝑥 ∈ (ℤ‘5) → ¬ (𝑥↑2) ≤ 𝑁)
2928pm2.21d 121 . . . 4 (𝑥 ∈ (ℤ‘5) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁))
3029adantld 490 . . 3 (𝑥 ∈ (ℤ‘5) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
3130adantl 481 . 2 ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
321, 2, 3, 4, 31prmlem1a 17077 1 𝑁 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  cdif 3911  {csn 4589   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   · cmul 11073   < clt 11208  cle 11209  cn 12186  2c2 12241  3c3 12242  5c5 12244  cdc 12649  cuz 12793  cexp 14026  cdvds 16222  cprime 16641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-prm 16642
This theorem is referenced by:  5prm  17079  7prm  17081  11prm  17085  13prm  17086  17prm  17087  19prm  17088  23prm  17089
  Copyright terms: Public domain W3C validator