MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmlem1 Structured version   Visualization version   GIF version

Theorem prmlem1 16737
Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
prmlem1.n 𝑁 ∈ ℕ
prmlem1.gt 1 < 𝑁
prmlem1.2 ¬ 2 ∥ 𝑁
prmlem1.3 ¬ 3 ∥ 𝑁
prmlem1.lt 𝑁 < 25
Assertion
Ref Expression
prmlem1 𝑁 ∈ ℙ

Proof of Theorem prmlem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prmlem1.n . 2 𝑁 ∈ ℕ
2 prmlem1.gt . 2 1 < 𝑁
3 prmlem1.2 . 2 ¬ 2 ∥ 𝑁
4 prmlem1.3 . 2 ¬ 3 ∥ 𝑁
5 eluzelre 12522 . . . . . . . 8 (𝑥 ∈ (ℤ‘5) → 𝑥 ∈ ℝ)
65resqcld 13893 . . . . . . 7 (𝑥 ∈ (ℤ‘5) → (𝑥↑2) ∈ ℝ)
7 eluzle 12524 . . . . . . . 8 (𝑥 ∈ (ℤ‘5) → 5 ≤ 𝑥)
8 5re 11990 . . . . . . . . 9 5 ∈ ℝ
9 5nn0 12183 . . . . . . . . . 10 5 ∈ ℕ0
109nn0ge0i 12190 . . . . . . . . 9 0 ≤ 5
11 le2sq2 13782 . . . . . . . . 9 (((5 ∈ ℝ ∧ 0 ≤ 5) ∧ (𝑥 ∈ ℝ ∧ 5 ≤ 𝑥)) → (5↑2) ≤ (𝑥↑2))
128, 10, 11mpanl12 698 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 5 ≤ 𝑥) → (5↑2) ≤ (𝑥↑2))
135, 7, 12syl2anc 583 . . . . . . 7 (𝑥 ∈ (ℤ‘5) → (5↑2) ≤ (𝑥↑2))
141nnrei 11912 . . . . . . . 8 𝑁 ∈ ℝ
158resqcli 13831 . . . . . . . 8 (5↑2) ∈ ℝ
16 prmlem1.lt . . . . . . . . . 10 𝑁 < 25
17 5cn 11991 . . . . . . . . . . . 12 5 ∈ ℂ
1817sqvali 13825 . . . . . . . . . . 11 (5↑2) = (5 · 5)
19 5t5e25 12469 . . . . . . . . . . 11 (5 · 5) = 25
2018, 19eqtri 2766 . . . . . . . . . 10 (5↑2) = 25
2116, 20breqtrri 5097 . . . . . . . . 9 𝑁 < (5↑2)
22 ltletr 10997 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ (5↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((𝑁 < (5↑2) ∧ (5↑2) ≤ (𝑥↑2)) → 𝑁 < (𝑥↑2)))
2321, 22mpani 692 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ (5↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((5↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2)))
2414, 15, 23mp3an12 1449 . . . . . . 7 ((𝑥↑2) ∈ ℝ → ((5↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2)))
256, 13, 24sylc 65 . . . . . 6 (𝑥 ∈ (ℤ‘5) → 𝑁 < (𝑥↑2))
26 ltnle 10985 . . . . . . 7 ((𝑁 ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁))
2714, 6, 26sylancr 586 . . . . . 6 (𝑥 ∈ (ℤ‘5) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁))
2825, 27mpbid 231 . . . . 5 (𝑥 ∈ (ℤ‘5) → ¬ (𝑥↑2) ≤ 𝑁)
2928pm2.21d 121 . . . 4 (𝑥 ∈ (ℤ‘5) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁))
3029adantld 490 . . 3 (𝑥 ∈ (ℤ‘5) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
3130adantl 481 . 2 ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
321, 2, 3, 4, 31prmlem1a 16736 1 𝑁 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085  wcel 2108  cdif 3880  {csn 4558   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   · cmul 10807   < clt 10940  cle 10941  cn 11903  2c2 11958  3c3 11959  5c5 11961  cdc 12366  cuz 12511  cexp 13710  cdvds 15891  cprime 16304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-prm 16305
This theorem is referenced by:  5prm  16738  7prm  16740  11prm  16744  13prm  16745  17prm  16746  19prm  16747  23prm  16748
  Copyright terms: Public domain W3C validator