| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmlem1 | Structured version Visualization version GIF version | ||
| Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| prmlem1.n | ⊢ 𝑁 ∈ ℕ |
| prmlem1.gt | ⊢ 1 < 𝑁 |
| prmlem1.2 | ⊢ ¬ 2 ∥ 𝑁 |
| prmlem1.3 | ⊢ ¬ 3 ∥ 𝑁 |
| prmlem1.lt | ⊢ 𝑁 < ;25 |
| Ref | Expression |
|---|---|
| prmlem1 | ⊢ 𝑁 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmlem1.n | . 2 ⊢ 𝑁 ∈ ℕ | |
| 2 | prmlem1.gt | . 2 ⊢ 1 < 𝑁 | |
| 3 | prmlem1.2 | . 2 ⊢ ¬ 2 ∥ 𝑁 | |
| 4 | prmlem1.3 | . 2 ⊢ ¬ 3 ∥ 𝑁 | |
| 5 | eluzelre 12751 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘5) → 𝑥 ∈ ℝ) | |
| 6 | 5 | resqcld 14036 | . . . . . . 7 ⊢ (𝑥 ∈ (ℤ≥‘5) → (𝑥↑2) ∈ ℝ) |
| 7 | eluzle 12753 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘5) → 5 ≤ 𝑥) | |
| 8 | 5re 12221 | . . . . . . . . 9 ⊢ 5 ∈ ℝ | |
| 9 | 5nn0 12410 | . . . . . . . . . 10 ⊢ 5 ∈ ℕ0 | |
| 10 | 9 | nn0ge0i 12417 | . . . . . . . . 9 ⊢ 0 ≤ 5 |
| 11 | le2sq2 14046 | . . . . . . . . 9 ⊢ (((5 ∈ ℝ ∧ 0 ≤ 5) ∧ (𝑥 ∈ ℝ ∧ 5 ≤ 𝑥)) → (5↑2) ≤ (𝑥↑2)) | |
| 12 | 8, 10, 11 | mpanl12 702 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 5 ≤ 𝑥) → (5↑2) ≤ (𝑥↑2)) |
| 13 | 5, 7, 12 | syl2anc 584 | . . . . . . 7 ⊢ (𝑥 ∈ (ℤ≥‘5) → (5↑2) ≤ (𝑥↑2)) |
| 14 | 1 | nnrei 12143 | . . . . . . . 8 ⊢ 𝑁 ∈ ℝ |
| 15 | 8 | resqcli 14097 | . . . . . . . 8 ⊢ (5↑2) ∈ ℝ |
| 16 | prmlem1.lt | . . . . . . . . . 10 ⊢ 𝑁 < ;25 | |
| 17 | 5cn 12222 | . . . . . . . . . . . 12 ⊢ 5 ∈ ℂ | |
| 18 | 17 | sqvali 14091 | . . . . . . . . . . 11 ⊢ (5↑2) = (5 · 5) |
| 19 | 5t5e25 12699 | . . . . . . . . . . 11 ⊢ (5 · 5) = ;25 | |
| 20 | 18, 19 | eqtri 2756 | . . . . . . . . . 10 ⊢ (5↑2) = ;25 |
| 21 | 16, 20 | breqtrri 5122 | . . . . . . . . 9 ⊢ 𝑁 < (5↑2) |
| 22 | ltletr 11214 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ (5↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((𝑁 < (5↑2) ∧ (5↑2) ≤ (𝑥↑2)) → 𝑁 < (𝑥↑2))) | |
| 23 | 21, 22 | mpani 696 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℝ ∧ (5↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((5↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2))) |
| 24 | 14, 15, 23 | mp3an12 1453 | . . . . . . 7 ⊢ ((𝑥↑2) ∈ ℝ → ((5↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2))) |
| 25 | 6, 13, 24 | sylc 65 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘5) → 𝑁 < (𝑥↑2)) |
| 26 | ltnle 11201 | . . . . . . 7 ⊢ ((𝑁 ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁)) | |
| 27 | 14, 6, 26 | sylancr 587 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘5) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁)) |
| 28 | 25, 27 | mpbid 232 | . . . . 5 ⊢ (𝑥 ∈ (ℤ≥‘5) → ¬ (𝑥↑2) ≤ 𝑁) |
| 29 | 28 | pm2.21d 121 | . . . 4 ⊢ (𝑥 ∈ (ℤ≥‘5) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁)) |
| 30 | 29 | adantld 490 | . . 3 ⊢ (𝑥 ∈ (ℤ≥‘5) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
| 31 | 30 | adantl 481 | . 2 ⊢ ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ≥‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
| 32 | 1, 2, 3, 4, 31 | prmlem1a 17022 | 1 ⊢ 𝑁 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 ∖ cdif 3895 {csn 4577 class class class wbr 5095 ‘cfv 6488 (class class class)co 7354 ℝcr 11014 0cc0 11015 1c1 11016 · cmul 11020 < clt 11155 ≤ cle 11156 ℕcn 12134 2c2 12189 3c3 12190 5c5 12192 ;cdc 12596 ℤ≥cuz 12740 ↑cexp 13972 ∥ cdvds 16167 ℙcprime 16586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-rp 12895 df-fz 13412 df-seq 13913 df-exp 13973 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-dvds 16168 df-prm 16587 |
| This theorem is referenced by: 5prm 17024 7prm 17026 11prm 17030 13prm 17031 17prm 17032 19prm 17033 23prm 17034 |
| Copyright terms: Public domain | W3C validator |