MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmlem1 Structured version   Visualization version   GIF version

Theorem prmlem1 17019
Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
prmlem1.n 𝑁 ∈ ℕ
prmlem1.gt 1 < 𝑁
prmlem1.2 ¬ 2 ∥ 𝑁
prmlem1.3 ¬ 3 ∥ 𝑁
prmlem1.lt 𝑁 < 25
Assertion
Ref Expression
prmlem1 𝑁 ∈ ℙ

Proof of Theorem prmlem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prmlem1.n . 2 𝑁 ∈ ℕ
2 prmlem1.gt . 2 1 < 𝑁
3 prmlem1.2 . 2 ¬ 2 ∥ 𝑁
4 prmlem1.3 . 2 ¬ 3 ∥ 𝑁
5 eluzelre 12743 . . . . . . . 8 (𝑥 ∈ (ℤ‘5) → 𝑥 ∈ ℝ)
65resqcld 14032 . . . . . . 7 (𝑥 ∈ (ℤ‘5) → (𝑥↑2) ∈ ℝ)
7 eluzle 12745 . . . . . . . 8 (𝑥 ∈ (ℤ‘5) → 5 ≤ 𝑥)
8 5re 12212 . . . . . . . . 9 5 ∈ ℝ
9 5nn0 12401 . . . . . . . . . 10 5 ∈ ℕ0
109nn0ge0i 12408 . . . . . . . . 9 0 ≤ 5
11 le2sq2 14042 . . . . . . . . 9 (((5 ∈ ℝ ∧ 0 ≤ 5) ∧ (𝑥 ∈ ℝ ∧ 5 ≤ 𝑥)) → (5↑2) ≤ (𝑥↑2))
128, 10, 11mpanl12 702 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 5 ≤ 𝑥) → (5↑2) ≤ (𝑥↑2))
135, 7, 12syl2anc 584 . . . . . . 7 (𝑥 ∈ (ℤ‘5) → (5↑2) ≤ (𝑥↑2))
141nnrei 12134 . . . . . . . 8 𝑁 ∈ ℝ
158resqcli 14093 . . . . . . . 8 (5↑2) ∈ ℝ
16 prmlem1.lt . . . . . . . . . 10 𝑁 < 25
17 5cn 12213 . . . . . . . . . . . 12 5 ∈ ℂ
1817sqvali 14087 . . . . . . . . . . 11 (5↑2) = (5 · 5)
19 5t5e25 12691 . . . . . . . . . . 11 (5 · 5) = 25
2018, 19eqtri 2754 . . . . . . . . . 10 (5↑2) = 25
2116, 20breqtrri 5118 . . . . . . . . 9 𝑁 < (5↑2)
22 ltletr 11205 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ (5↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((𝑁 < (5↑2) ∧ (5↑2) ≤ (𝑥↑2)) → 𝑁 < (𝑥↑2)))
2321, 22mpani 696 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ (5↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((5↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2)))
2414, 15, 23mp3an12 1453 . . . . . . 7 ((𝑥↑2) ∈ ℝ → ((5↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2)))
256, 13, 24sylc 65 . . . . . 6 (𝑥 ∈ (ℤ‘5) → 𝑁 < (𝑥↑2))
26 ltnle 11192 . . . . . . 7 ((𝑁 ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁))
2714, 6, 26sylancr 587 . . . . . 6 (𝑥 ∈ (ℤ‘5) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁))
2825, 27mpbid 232 . . . . 5 (𝑥 ∈ (ℤ‘5) → ¬ (𝑥↑2) ≤ 𝑁)
2928pm2.21d 121 . . . 4 (𝑥 ∈ (ℤ‘5) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁))
3029adantld 490 . . 3 (𝑥 ∈ (ℤ‘5) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
3130adantl 481 . 2 ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
321, 2, 3, 4, 31prmlem1a 17018 1 𝑁 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2111  cdif 3899  {csn 4576   class class class wbr 5091  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   · cmul 11011   < clt 11146  cle 11147  cn 12125  2c2 12180  3c3 12181  5c5 12183  cdc 12588  cuz 12732  cexp 13968  cdvds 16163  cprime 16582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-prm 16583
This theorem is referenced by:  5prm  17020  7prm  17022  11prm  17026  13prm  17027  17prm  17028  19prm  17029  23prm  17030
  Copyright terms: Public domain W3C validator