Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  recreclt Structured version   Visualization version   GIF version

Theorem recreclt 11532
 Description: Given a positive number 𝐴, construct a new positive number less than both 𝐴 and 1. (Contributed by NM, 28-Dec-2005.)
Assertion
Ref Expression
recreclt ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / (1 + (1 / 𝐴))) < 1 ∧ (1 / (1 + (1 / 𝐴))) < 𝐴))

Proof of Theorem recreclt
StepHypRef Expression
1 recgt0 11479 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))
2 gt0ne0 11098 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
3 rereccl 11351 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ)
42, 3syldan 594 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
5 1re 10634 . . . . 5 1 ∈ ℝ
6 ltaddpos 11123 . . . . 5 (((1 / 𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (0 < (1 / 𝐴) ↔ 1 < (1 + (1 / 𝐴))))
74, 5, 6sylancl 589 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < (1 / 𝐴) ↔ 1 < (1 + (1 / 𝐴))))
81, 7mpbid 235 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 1 < (1 + (1 / 𝐴)))
9 readdcl 10613 . . . . 5 ((1 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (1 + (1 / 𝐴)) ∈ ℝ)
105, 4, 9sylancr 590 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 + (1 / 𝐴)) ∈ ℝ)
11 0lt1 11155 . . . . . 6 0 < 1
12 0re 10636 . . . . . . 7 0 ∈ ℝ
13 lttr 10710 . . . . . . 7 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (1 + (1 / 𝐴)) ∈ ℝ) → ((0 < 1 ∧ 1 < (1 + (1 / 𝐴))) → 0 < (1 + (1 / 𝐴))))
1412, 5, 10, 13mp3an12i 1462 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((0 < 1 ∧ 1 < (1 + (1 / 𝐴))) → 0 < (1 + (1 / 𝐴))))
1511, 14mpani 695 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 < (1 + (1 / 𝐴)) → 0 < (1 + (1 / 𝐴))))
168, 15mpd 15 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 + (1 / 𝐴)))
17 recgt1 11529 . . . 4 (((1 + (1 / 𝐴)) ∈ ℝ ∧ 0 < (1 + (1 / 𝐴))) → (1 < (1 + (1 / 𝐴)) ↔ (1 / (1 + (1 / 𝐴))) < 1))
1810, 16, 17syl2anc 587 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 < (1 + (1 / 𝐴)) ↔ (1 / (1 + (1 / 𝐴))) < 1))
198, 18mpbid 235 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / (1 + (1 / 𝐴))) < 1)
20 ltaddpos 11123 . . . . . 6 ((1 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < 1 ↔ (1 / 𝐴) < ((1 / 𝐴) + 1)))
215, 4, 20sylancr 590 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < 1 ↔ (1 / 𝐴) < ((1 / 𝐴) + 1)))
2211, 21mpbii 236 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) < ((1 / 𝐴) + 1))
234recnd 10662 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ)
24 ax-1cn 10588 . . . . 5 1 ∈ ℂ
25 addcom 10819 . . . . 5 (((1 / 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((1 / 𝐴) + 1) = (1 + (1 / 𝐴)))
2623, 24, 25sylancl 589 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) + 1) = (1 + (1 / 𝐴)))
2722, 26breqtrd 5059 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) < (1 + (1 / 𝐴)))
28 simpl 486 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
29 simpr 488 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < 𝐴)
30 ltrec1 11520 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ ((1 + (1 / 𝐴)) ∈ ℝ ∧ 0 < (1 + (1 / 𝐴)))) → ((1 / 𝐴) < (1 + (1 / 𝐴)) ↔ (1 / (1 + (1 / 𝐴))) < 𝐴))
3128, 29, 10, 16, 30syl22anc 837 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) < (1 + (1 / 𝐴)) ↔ (1 / (1 + (1 / 𝐴))) < 𝐴))
3227, 31mpbid 235 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / (1 + (1 / 𝐴))) < 𝐴)
3319, 32jca 515 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / (1 + (1 / 𝐴))) < 1 ∧ (1 / (1 + (1 / 𝐴))) < 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112   ≠ wne 2990   class class class wbr 5033  (class class class)co 7139  ℂcc 10528  ℝcr 10529  0cc0 10530  1c1 10531   + caddc 10533   < clt 10668   / cdiv 11290 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator