MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recreclt Structured version   Visualization version   GIF version

Theorem recreclt 12165
Description: Given a positive number 𝐴, construct a new positive number less than both 𝐴 and 1. (Contributed by NM, 28-Dec-2005.)
Assertion
Ref Expression
recreclt ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / (1 + (1 / 𝐴))) < 1 ∧ (1 / (1 + (1 / 𝐴))) < 𝐴))

Proof of Theorem recreclt
StepHypRef Expression
1 recgt0 12111 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))
2 gt0ne0 11726 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
3 rereccl 11983 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ)
42, 3syldan 591 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
5 1re 11259 . . . . 5 1 ∈ ℝ
6 ltaddpos 11751 . . . . 5 (((1 / 𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (0 < (1 / 𝐴) ↔ 1 < (1 + (1 / 𝐴))))
74, 5, 6sylancl 586 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < (1 / 𝐴) ↔ 1 < (1 + (1 / 𝐴))))
81, 7mpbid 232 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 1 < (1 + (1 / 𝐴)))
9 readdcl 11236 . . . . 5 ((1 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (1 + (1 / 𝐴)) ∈ ℝ)
105, 4, 9sylancr 587 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 + (1 / 𝐴)) ∈ ℝ)
11 0lt1 11783 . . . . . 6 0 < 1
12 0re 11261 . . . . . . 7 0 ∈ ℝ
13 lttr 11335 . . . . . . 7 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (1 + (1 / 𝐴)) ∈ ℝ) → ((0 < 1 ∧ 1 < (1 + (1 / 𝐴))) → 0 < (1 + (1 / 𝐴))))
1412, 5, 10, 13mp3an12i 1464 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((0 < 1 ∧ 1 < (1 + (1 / 𝐴))) → 0 < (1 + (1 / 𝐴))))
1511, 14mpani 696 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 < (1 + (1 / 𝐴)) → 0 < (1 + (1 / 𝐴))))
168, 15mpd 15 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 + (1 / 𝐴)))
17 recgt1 12162 . . . 4 (((1 + (1 / 𝐴)) ∈ ℝ ∧ 0 < (1 + (1 / 𝐴))) → (1 < (1 + (1 / 𝐴)) ↔ (1 / (1 + (1 / 𝐴))) < 1))
1810, 16, 17syl2anc 584 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 < (1 + (1 / 𝐴)) ↔ (1 / (1 + (1 / 𝐴))) < 1))
198, 18mpbid 232 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / (1 + (1 / 𝐴))) < 1)
20 ltaddpos 11751 . . . . . 6 ((1 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < 1 ↔ (1 / 𝐴) < ((1 / 𝐴) + 1)))
215, 4, 20sylancr 587 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < 1 ↔ (1 / 𝐴) < ((1 / 𝐴) + 1)))
2211, 21mpbii 233 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) < ((1 / 𝐴) + 1))
234recnd 11287 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ)
24 ax-1cn 11211 . . . . 5 1 ∈ ℂ
25 addcom 11445 . . . . 5 (((1 / 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((1 / 𝐴) + 1) = (1 + (1 / 𝐴)))
2623, 24, 25sylancl 586 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) + 1) = (1 + (1 / 𝐴)))
2722, 26breqtrd 5174 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) < (1 + (1 / 𝐴)))
28 simpl 482 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
29 simpr 484 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < 𝐴)
30 ltrec1 12153 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ ((1 + (1 / 𝐴)) ∈ ℝ ∧ 0 < (1 + (1 / 𝐴)))) → ((1 / 𝐴) < (1 + (1 / 𝐴)) ↔ (1 / (1 + (1 / 𝐴))) < 𝐴))
3128, 29, 10, 16, 30syl22anc 839 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) < (1 + (1 / 𝐴)) ↔ (1 / (1 + (1 / 𝐴))) < 𝐴))
3227, 31mpbid 232 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / (1 + (1 / 𝐴))) < 𝐴)
3319, 32jca 511 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / (1 + (1 / 𝐴))) < 1 ∧ (1 / (1 + (1 / 𝐴))) < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   < clt 11293   / cdiv 11918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator