Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difmodm1lt Structured version   Visualization version   GIF version

Theorem difmodm1lt 47161
Description: The difference between an integer modulo a positive integer and the integer decreased by 1 modulo the same modulus is less than the modulus decreased by 1 (if the modulus is greater than 2). This theorem would not be valid for an odd 𝐴 and 𝑁 = 2, since ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) would be (1 − 0) = 1 which is not less than (𝑁 − 1) = 1. (Contributed by AV, 6-Jun-2012.)
Assertion
Ref Expression
difmodm1lt ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))

Proof of Theorem difmodm1lt
StepHypRef Expression
1 simpl 483 . . . 4 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (𝐴 mod 𝑁) = 1)
2 zre 12558 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
323ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝐴 ∈ ℝ)
4 nnre 12215 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
543ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 ∈ ℝ)
6 1lt2 12379 . . . . . . . . . . 11 1 < 2
7 1red 11211 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 1 ∈ ℝ)
8 2re 12282 . . . . . . . . . . . . . 14 2 ∈ ℝ
98a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 2 ∈ ℝ)
107, 9, 43jca 1128 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ))
11 lttr 11286 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 < 𝑁) → 1 < 𝑁))
1210, 11syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((1 < 2 ∧ 2 < 𝑁) → 1 < 𝑁))
136, 12mpani 694 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 < 𝑁 → 1 < 𝑁))
1413a1i 11 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝑁 ∈ ℕ → (2 < 𝑁 → 1 < 𝑁)))
15143imp 1111 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 < 𝑁)
163, 5, 153jca 1128 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁))
1716adantl 482 . . . . . 6 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁))
18 m1mod0mod1 46023 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))
1917, 18syl 17 . . . . 5 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))
201, 19mpbird 256 . . . 4 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 − 1) mod 𝑁) = 0)
211, 20oveq12d 7423 . . 3 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) = (1 − 0))
22 df-2 12271 . . . . . . . . . 10 2 = (1 + 1)
2322breq1i 5154 . . . . . . . . 9 (2 < 𝑁 ↔ (1 + 1) < 𝑁)
2423biimpi 215 . . . . . . . 8 (2 < 𝑁 → (1 + 1) < 𝑁)
2524adantl 482 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 + 1) < 𝑁)
26 1red 11211 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 ∈ ℝ)
274adantr 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 ∈ ℝ)
2826, 26, 27ltaddsub2d 11811 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((1 + 1) < 𝑁 ↔ 1 < (𝑁 − 1)))
2925, 28mpbid 231 . . . . . 6 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 < (𝑁 − 1))
30 1m0e1 12329 . . . . . . 7 (1 − 0) = 1
3130breq1i 5154 . . . . . 6 ((1 − 0) < (𝑁 − 1) ↔ 1 < (𝑁 − 1))
3229, 31sylibr 233 . . . . 5 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 − 0) < (𝑁 − 1))
33323adant1 1130 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 − 0) < (𝑁 − 1))
3433adantl 482 . . 3 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (1 − 0) < (𝑁 − 1))
3521, 34eqbrtrd 5169 . 2 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))
36 zmodfz 13854 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 mod 𝑁) ∈ (0...(𝑁 − 1)))
37363adant3 1132 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 mod 𝑁) ∈ (0...(𝑁 − 1)))
38 elfzle2 13501 . . . . . 6 ((𝐴 mod 𝑁) ∈ (0...(𝑁 − 1)) → (𝐴 mod 𝑁) ≤ (𝑁 − 1))
3937, 38syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 mod 𝑁) ≤ (𝑁 − 1))
4039adantl 482 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (𝐴 mod 𝑁) ≤ (𝑁 − 1))
41 nnrp 12981 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
42413ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 ∈ ℝ+)
433, 42modcld 13836 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 mod 𝑁) ∈ ℝ)
44 peano2rem 11523 . . . . . . . . 9 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
454, 44syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
46453ad2ant2 1134 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝑁 − 1) ∈ ℝ)
47 peano2zm 12601 . . . . . . . . . 10 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
4847zred 12662 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℝ)
49483ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 − 1) ∈ ℝ)
5049, 42modcld 13836 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 − 1) mod 𝑁) ∈ ℝ)
5143, 46, 503jca 1128 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ))
5251adantl 482 . . . . 5 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ))
53 lesub1 11704 . . . . 5 (((𝐴 mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ) → ((𝐴 mod 𝑁) ≤ (𝑁 − 1) ↔ ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁))))
5452, 53syl 17 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) ≤ (𝑁 − 1) ↔ ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁))))
5540, 54mpbid 231 . . 3 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)))
5649, 42jca 512 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+))
5756adantl 482 . . . . . . 7 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+))
58 modge0 13840 . . . . . . 7 (((𝐴 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → 0 ≤ ((𝐴 − 1) mod 𝑁))
5957, 58syl 17 . . . . . 6 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → 0 ≤ ((𝐴 − 1) mod 𝑁))
6016, 18syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))
6160bicomd 222 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) = 1 ↔ ((𝐴 − 1) mod 𝑁) = 0))
6261notbid 317 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (¬ (𝐴 mod 𝑁) = 1 ↔ ¬ ((𝐴 − 1) mod 𝑁) = 0))
6362biimpac 479 . . . . . . 7 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ¬ ((𝐴 − 1) mod 𝑁) = 0)
6463neqned 2947 . . . . . 6 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 − 1) mod 𝑁) ≠ 0)
6559, 64jca 512 . . . . 5 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (0 ≤ ((𝐴 − 1) mod 𝑁) ∧ ((𝐴 − 1) mod 𝑁) ≠ 0))
66 0red 11213 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 0 ∈ ℝ)
6766, 50jca 512 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (0 ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ))
6867adantl 482 . . . . . 6 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (0 ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ))
69 ltlen 11311 . . . . . 6 ((0 ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ) → (0 < ((𝐴 − 1) mod 𝑁) ↔ (0 ≤ ((𝐴 − 1) mod 𝑁) ∧ ((𝐴 − 1) mod 𝑁) ≠ 0)))
7068, 69syl 17 . . . . 5 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (0 < ((𝐴 − 1) mod 𝑁) ↔ (0 ≤ ((𝐴 − 1) mod 𝑁) ∧ ((𝐴 − 1) mod 𝑁) ≠ 0)))
7165, 70mpbird 256 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → 0 < ((𝐴 − 1) mod 𝑁))
7250, 46jca 512 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (((𝐴 − 1) mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ))
7372adantl 482 . . . . 5 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (((𝐴 − 1) mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ))
74 ltsubpos 11702 . . . . 5 ((((𝐴 − 1) mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ) → (0 < ((𝐴 − 1) mod 𝑁) ↔ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)))
7573, 74syl 17 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (0 < ((𝐴 − 1) mod 𝑁) ↔ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)))
7671, 75mpbid 231 . . 3 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))
7743, 50resubcld 11638 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ)
7846, 50resubcld 11638 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ)
7977, 78, 463jca 1128 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ))
8079adantl 482 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ))
81 lelttr 11300 . . . 4 ((((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ) → ((((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)))
8280, 81syl 17 . . 3 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)))
8355, 76, 82mp2and 697 . 2 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))
8435, 83pm2.61ian 810 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940   class class class wbr 5147  (class class class)co 7405  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   < clt 11244  cle 11245  cmin 11440  cn 12208  2c2 12263  cz 12554  +crp 12970  ...cfz 13480   mod cmo 13830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fl 13753  df-mod 13831
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator