Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difmodm1lt Structured version   Visualization version   GIF version

Theorem difmodm1lt 47347
Description: The difference between an integer modulo a positive integer and the integer decreased by 1 modulo the same modulus is less than the modulus decreased by 1 (if the modulus is greater than 2). This theorem would not be valid for an odd 𝐴 and 𝑁 = 2, since ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) would be (1 − 0) = 1 which is not less than (𝑁 − 1) = 1. (Contributed by AV, 6-Jun-2012.) (Proof shortened by SN, 27-Nov-2025.)
Assertion
Ref Expression
difmodm1lt ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))

Proof of Theorem difmodm1lt
StepHypRef Expression
1 peano2zm 12536 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
213ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 − 1) ∈ ℤ)
32zred 12598 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 − 1) ∈ ℝ)
4 nnrp 12923 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
543ad2ant2 1134 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 ∈ ℝ+)
63, 5modcld 13797 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 − 1) mod 𝑁) ∈ ℝ)
76recnd 11162 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 − 1) mod 𝑁) ∈ ℂ)
8 zre 12493 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
983ad2ant1 1133 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝐴 ∈ ℝ)
109, 5modcld 13797 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 mod 𝑁) ∈ ℝ)
1110recnd 11162 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 mod 𝑁) ∈ ℂ)
127, 11negsubdi2d 11509 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → -(((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)))
13 m1modmmod 47346 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1))
14133adant3 1132 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1))
1514negeqd 11375 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → -(((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = -if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1))
1612, 15eqtr3d 2766 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) = -if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1))
17 iftrue 4484 . . . . . 6 ((𝐴 mod 𝑁) = 0 → if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1) = (𝑁 − 1))
1817adantr 480 . . . . 5 (((𝐴 mod 𝑁) = 0 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1) = (𝑁 − 1))
1918negeqd 11375 . . . 4 (((𝐴 mod 𝑁) = 0 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → -if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1) = -(𝑁 − 1))
20 1red 11135 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 ∈ ℝ)
21 2re 12220 . . . . . . . . 9 2 ∈ ℝ
2221a1i 11 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 2 ∈ ℝ)
23 nnre 12153 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
24233ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 ∈ ℝ)
25 1lt2 12312 . . . . . . . . 9 1 < 2
2625a1i 11 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 < 2)
27 simp3 1138 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 2 < 𝑁)
2820, 22, 24, 26, 27lttrd 11295 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 < 𝑁)
29 difrp 12951 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (1 < 𝑁 ↔ (𝑁 − 1) ∈ ℝ+))
3020, 24, 29syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 < 𝑁 ↔ (𝑁 − 1) ∈ ℝ+))
3128, 30mpbid 232 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝑁 − 1) ∈ ℝ+)
32 neglt 12931 . . . . . 6 ((𝑁 − 1) ∈ ℝ+ → -(𝑁 − 1) < (𝑁 − 1))
3331, 32syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → -(𝑁 − 1) < (𝑁 − 1))
3433adantl 481 . . . 4 (((𝐴 mod 𝑁) = 0 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → -(𝑁 − 1) < (𝑁 − 1))
3519, 34eqbrtrd 5117 . . 3 (((𝐴 mod 𝑁) = 0 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → -if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1) < (𝑁 − 1))
36 iffalse 4487 . . . . . 6 (¬ (𝐴 mod 𝑁) = 0 → if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1) = -1)
3736adantr 480 . . . . 5 ((¬ (𝐴 mod 𝑁) = 0 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1) = -1)
3837negeqd 11375 . . . 4 ((¬ (𝐴 mod 𝑁) = 0 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → -if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1) = --1)
39 negneg1e1 12135 . . . . . 6 --1 = 1
40 df-2 12209 . . . . . . . . . 10 2 = (1 + 1)
4140breq1i 5102 . . . . . . . . 9 (2 < 𝑁 ↔ (1 + 1) < 𝑁)
4241biimpi 216 . . . . . . . 8 (2 < 𝑁 → (1 + 1) < 𝑁)
43423ad2ant3 1135 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 + 1) < 𝑁)
4420, 20, 24ltaddsub2d 11739 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((1 + 1) < 𝑁 ↔ 1 < (𝑁 − 1)))
4543, 44mpbid 232 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 < (𝑁 − 1))
4639, 45eqbrtrid 5130 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → --1 < (𝑁 − 1))
4746adantl 481 . . . 4 ((¬ (𝐴 mod 𝑁) = 0 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → --1 < (𝑁 − 1))
4838, 47eqbrtrd 5117 . . 3 ((¬ (𝐴 mod 𝑁) = 0 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → -if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1) < (𝑁 − 1))
4935, 48pm2.61ian 811 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → -if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1) < (𝑁 − 1))
5016, 49eqbrtrd 5117 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  ifcif 4478   class class class wbr 5095  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   < clt 11168  cmin 11365  -cneg 11366  cn 12146  2c2 12201  cz 12489  +crp 12911   mod cmo 13791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator