Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difmodm1lt Structured version   Visualization version   GIF version

Theorem difmodm1lt 47706
Description: The difference between an integer modulo a positive integer and the integer decreased by 1 modulo the same modulus is less than the modulus decreased by 1 (if the modulus is greater than 2). This theorem would not be valid for an odd 𝐴 and 𝑁 = 2, since ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) would be (1 − 0) = 1 which is not less than (𝑁 − 1) = 1. (Contributed by AV, 6-Jun-2012.)
Assertion
Ref Expression
difmodm1lt ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))

Proof of Theorem difmodm1lt
StepHypRef Expression
1 simpl 481 . . . 4 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (𝐴 mod 𝑁) = 1)
2 zre 12590 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
323ad2ant1 1130 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝐴 ∈ ℝ)
4 nnre 12247 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
543ad2ant2 1131 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 ∈ ℝ)
6 1lt2 12411 . . . . . . . . . . 11 1 < 2
7 1red 11243 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 1 ∈ ℝ)
8 2re 12314 . . . . . . . . . . . . . 14 2 ∈ ℝ
98a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 2 ∈ ℝ)
107, 9, 43jca 1125 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ))
11 lttr 11318 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 < 𝑁) → 1 < 𝑁))
1210, 11syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((1 < 2 ∧ 2 < 𝑁) → 1 < 𝑁))
136, 12mpani 694 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 < 𝑁 → 1 < 𝑁))
1413a1i 11 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝑁 ∈ ℕ → (2 < 𝑁 → 1 < 𝑁)))
15143imp 1108 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 < 𝑁)
163, 5, 153jca 1125 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁))
1716adantl 480 . . . . . 6 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁))
18 m1mod0mod1 46771 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))
1917, 18syl 17 . . . . 5 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))
201, 19mpbird 256 . . . 4 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 − 1) mod 𝑁) = 0)
211, 20oveq12d 7433 . . 3 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) = (1 − 0))
22 df-2 12303 . . . . . . . . . 10 2 = (1 + 1)
2322breq1i 5150 . . . . . . . . 9 (2 < 𝑁 ↔ (1 + 1) < 𝑁)
2423biimpi 215 . . . . . . . 8 (2 < 𝑁 → (1 + 1) < 𝑁)
2524adantl 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 + 1) < 𝑁)
26 1red 11243 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 ∈ ℝ)
274adantr 479 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 ∈ ℝ)
2826, 26, 27ltaddsub2d 11843 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((1 + 1) < 𝑁 ↔ 1 < (𝑁 − 1)))
2925, 28mpbid 231 . . . . . 6 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 < (𝑁 − 1))
30 1m0e1 12361 . . . . . . 7 (1 − 0) = 1
3130breq1i 5150 . . . . . 6 ((1 − 0) < (𝑁 − 1) ↔ 1 < (𝑁 − 1))
3229, 31sylibr 233 . . . . 5 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 − 0) < (𝑁 − 1))
33323adant1 1127 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 − 0) < (𝑁 − 1))
3433adantl 480 . . 3 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (1 − 0) < (𝑁 − 1))
3521, 34eqbrtrd 5165 . 2 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))
36 zmodfz 13888 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 mod 𝑁) ∈ (0...(𝑁 − 1)))
37363adant3 1129 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 mod 𝑁) ∈ (0...(𝑁 − 1)))
38 elfzle2 13535 . . . . . 6 ((𝐴 mod 𝑁) ∈ (0...(𝑁 − 1)) → (𝐴 mod 𝑁) ≤ (𝑁 − 1))
3937, 38syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 mod 𝑁) ≤ (𝑁 − 1))
4039adantl 480 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (𝐴 mod 𝑁) ≤ (𝑁 − 1))
41 nnrp 13015 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
42413ad2ant2 1131 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 ∈ ℝ+)
433, 42modcld 13870 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 mod 𝑁) ∈ ℝ)
44 peano2rem 11555 . . . . . . . . 9 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
454, 44syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
46453ad2ant2 1131 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝑁 − 1) ∈ ℝ)
47 peano2zm 12633 . . . . . . . . . 10 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
4847zred 12694 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℝ)
49483ad2ant1 1130 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 − 1) ∈ ℝ)
5049, 42modcld 13870 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 − 1) mod 𝑁) ∈ ℝ)
5143, 46, 503jca 1125 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ))
5251adantl 480 . . . . 5 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ))
53 lesub1 11736 . . . . 5 (((𝐴 mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ) → ((𝐴 mod 𝑁) ≤ (𝑁 − 1) ↔ ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁))))
5452, 53syl 17 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) ≤ (𝑁 − 1) ↔ ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁))))
5540, 54mpbid 231 . . 3 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)))
5649, 42jca 510 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+))
5756adantl 480 . . . . . . 7 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+))
58 modge0 13874 . . . . . . 7 (((𝐴 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → 0 ≤ ((𝐴 − 1) mod 𝑁))
5957, 58syl 17 . . . . . 6 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → 0 ≤ ((𝐴 − 1) mod 𝑁))
6016, 18syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))
6160bicomd 222 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) = 1 ↔ ((𝐴 − 1) mod 𝑁) = 0))
6261notbid 317 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (¬ (𝐴 mod 𝑁) = 1 ↔ ¬ ((𝐴 − 1) mod 𝑁) = 0))
6362biimpac 477 . . . . . . 7 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ¬ ((𝐴 − 1) mod 𝑁) = 0)
6463neqned 2937 . . . . . 6 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 − 1) mod 𝑁) ≠ 0)
6559, 64jca 510 . . . . 5 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (0 ≤ ((𝐴 − 1) mod 𝑁) ∧ ((𝐴 − 1) mod 𝑁) ≠ 0))
66 0red 11245 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 0 ∈ ℝ)
6766, 50jca 510 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (0 ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ))
6867adantl 480 . . . . . 6 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (0 ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ))
69 ltlen 11343 . . . . . 6 ((0 ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ) → (0 < ((𝐴 − 1) mod 𝑁) ↔ (0 ≤ ((𝐴 − 1) mod 𝑁) ∧ ((𝐴 − 1) mod 𝑁) ≠ 0)))
7068, 69syl 17 . . . . 5 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (0 < ((𝐴 − 1) mod 𝑁) ↔ (0 ≤ ((𝐴 − 1) mod 𝑁) ∧ ((𝐴 − 1) mod 𝑁) ≠ 0)))
7165, 70mpbird 256 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → 0 < ((𝐴 − 1) mod 𝑁))
7250, 46jca 510 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (((𝐴 − 1) mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ))
7372adantl 480 . . . . 5 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (((𝐴 − 1) mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ))
74 ltsubpos 11734 . . . . 5 ((((𝐴 − 1) mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ) → (0 < ((𝐴 − 1) mod 𝑁) ↔ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)))
7573, 74syl 17 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (0 < ((𝐴 − 1) mod 𝑁) ↔ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)))
7671, 75mpbid 231 . . 3 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))
7743, 50resubcld 11670 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ)
7846, 50resubcld 11670 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ)
7977, 78, 463jca 1125 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ))
8079adantl 480 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ))
81 lelttr 11332 . . . 4 ((((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ) → ((((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)))
8280, 81syl 17 . . 3 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)))
8355, 76, 82mp2and 697 . 2 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))
8435, 83pm2.61ian 810 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2930   class class class wbr 5143  (class class class)co 7415  cr 11135  0cc0 11136  1c1 11137   + caddc 11139   < clt 11276  cle 11277  cmin 11472  cn 12240  2c2 12295  cz 12586  +crp 13004  ...cfz 13514   mod cmo 13864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-sup 9463  df-inf 9464  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-n0 12501  df-z 12587  df-uz 12851  df-rp 13005  df-fz 13515  df-fl 13787  df-mod 13865
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator