Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difmodm1lt Structured version   Visualization version   GIF version

Theorem difmodm1lt 48448
Description: The difference between an integer modulo a positive integer and the integer decreased by 1 modulo the same modulus is less than the modulus decreased by 1 (if the modulus is greater than 2). This theorem would not be valid for an odd 𝐴 and 𝑁 = 2, since ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) would be (1 − 0) = 1 which is not less than (𝑁 − 1) = 1. (Contributed by AV, 6-Jun-2012.)
Assertion
Ref Expression
difmodm1lt ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))

Proof of Theorem difmodm1lt
StepHypRef Expression
1 simpl 482 . . . 4 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (𝐴 mod 𝑁) = 1)
2 zre 12619 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
323ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝐴 ∈ ℝ)
4 nnre 12274 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
543ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 ∈ ℝ)
6 1lt2 12438 . . . . . . . . . . 11 1 < 2
7 1red 11263 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 1 ∈ ℝ)
8 2re 12341 . . . . . . . . . . . . . 14 2 ∈ ℝ
98a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 2 ∈ ℝ)
107, 9, 43jca 1128 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ))
11 lttr 11338 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 < 𝑁) → 1 < 𝑁))
1210, 11syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((1 < 2 ∧ 2 < 𝑁) → 1 < 𝑁))
136, 12mpani 696 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 < 𝑁 → 1 < 𝑁))
1413a1i 11 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝑁 ∈ ℕ → (2 < 𝑁 → 1 < 𝑁)))
15143imp 1110 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 < 𝑁)
163, 5, 153jca 1128 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁))
1716adantl 481 . . . . . 6 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁))
18 m1mod0mod1 47361 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))
1917, 18syl 17 . . . . 5 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))
201, 19mpbird 257 . . . 4 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 − 1) mod 𝑁) = 0)
211, 20oveq12d 7450 . . 3 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) = (1 − 0))
22 df-2 12330 . . . . . . . . . 10 2 = (1 + 1)
2322breq1i 5149 . . . . . . . . 9 (2 < 𝑁 ↔ (1 + 1) < 𝑁)
2423biimpi 216 . . . . . . . 8 (2 < 𝑁 → (1 + 1) < 𝑁)
2524adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 + 1) < 𝑁)
26 1red 11263 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 ∈ ℝ)
274adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 ∈ ℝ)
2826, 26, 27ltaddsub2d 11865 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((1 + 1) < 𝑁 ↔ 1 < (𝑁 − 1)))
2925, 28mpbid 232 . . . . . 6 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 < (𝑁 − 1))
30 1m0e1 12388 . . . . . . 7 (1 − 0) = 1
3130breq1i 5149 . . . . . 6 ((1 − 0) < (𝑁 − 1) ↔ 1 < (𝑁 − 1))
3229, 31sylibr 234 . . . . 5 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 − 0) < (𝑁 − 1))
33323adant1 1130 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 − 0) < (𝑁 − 1))
3433adantl 481 . . 3 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (1 − 0) < (𝑁 − 1))
3521, 34eqbrtrd 5164 . 2 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))
36 zmodfz 13934 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 mod 𝑁) ∈ (0...(𝑁 − 1)))
37363adant3 1132 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 mod 𝑁) ∈ (0...(𝑁 − 1)))
38 elfzle2 13569 . . . . . 6 ((𝐴 mod 𝑁) ∈ (0...(𝑁 − 1)) → (𝐴 mod 𝑁) ≤ (𝑁 − 1))
3937, 38syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 mod 𝑁) ≤ (𝑁 − 1))
4039adantl 481 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (𝐴 mod 𝑁) ≤ (𝑁 − 1))
41 nnrp 13047 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
42413ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 ∈ ℝ+)
433, 42modcld 13916 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 mod 𝑁) ∈ ℝ)
44 peano2rem 11577 . . . . . . . . 9 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
454, 44syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
46453ad2ant2 1134 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝑁 − 1) ∈ ℝ)
47 peano2zm 12662 . . . . . . . . . 10 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
4847zred 12724 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℝ)
49483ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 − 1) ∈ ℝ)
5049, 42modcld 13916 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 − 1) mod 𝑁) ∈ ℝ)
5143, 46, 503jca 1128 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ))
5251adantl 481 . . . . 5 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ))
53 lesub1 11758 . . . . 5 (((𝐴 mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ) → ((𝐴 mod 𝑁) ≤ (𝑁 − 1) ↔ ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁))))
5452, 53syl 17 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) ≤ (𝑁 − 1) ↔ ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁))))
5540, 54mpbid 232 . . 3 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)))
5649, 42jca 511 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+))
5756adantl 481 . . . . . . 7 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+))
58 modge0 13920 . . . . . . 7 (((𝐴 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → 0 ≤ ((𝐴 − 1) mod 𝑁))
5957, 58syl 17 . . . . . 6 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → 0 ≤ ((𝐴 − 1) mod 𝑁))
6016, 18syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))
6160bicomd 223 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) = 1 ↔ ((𝐴 − 1) mod 𝑁) = 0))
6261notbid 318 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (¬ (𝐴 mod 𝑁) = 1 ↔ ¬ ((𝐴 − 1) mod 𝑁) = 0))
6362biimpac 478 . . . . . . 7 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ¬ ((𝐴 − 1) mod 𝑁) = 0)
6463neqned 2946 . . . . . 6 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 − 1) mod 𝑁) ≠ 0)
6559, 64jca 511 . . . . 5 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (0 ≤ ((𝐴 − 1) mod 𝑁) ∧ ((𝐴 − 1) mod 𝑁) ≠ 0))
66 0red 11265 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 0 ∈ ℝ)
6766, 50jca 511 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (0 ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ))
6867adantl 481 . . . . . 6 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (0 ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ))
69 ltlen 11363 . . . . . 6 ((0 ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ) → (0 < ((𝐴 − 1) mod 𝑁) ↔ (0 ≤ ((𝐴 − 1) mod 𝑁) ∧ ((𝐴 − 1) mod 𝑁) ≠ 0)))
7068, 69syl 17 . . . . 5 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (0 < ((𝐴 − 1) mod 𝑁) ↔ (0 ≤ ((𝐴 − 1) mod 𝑁) ∧ ((𝐴 − 1) mod 𝑁) ≠ 0)))
7165, 70mpbird 257 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → 0 < ((𝐴 − 1) mod 𝑁))
7250, 46jca 511 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (((𝐴 − 1) mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ))
7372adantl 481 . . . . 5 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (((𝐴 − 1) mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ))
74 ltsubpos 11756 . . . . 5 ((((𝐴 − 1) mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ) → (0 < ((𝐴 − 1) mod 𝑁) ↔ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)))
7573, 74syl 17 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (0 < ((𝐴 − 1) mod 𝑁) ↔ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)))
7671, 75mpbid 232 . . 3 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))
7743, 50resubcld 11692 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ)
7846, 50resubcld 11692 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ)
7977, 78, 463jca 1128 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ))
8079adantl 481 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ))
81 lelttr 11352 . . . 4 ((((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ) → ((((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)))
8280, 81syl 17 . . 3 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)))
8355, 76, 82mp2and 699 . 2 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))
8435, 83pm2.61ian 811 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939   class class class wbr 5142  (class class class)co 7432  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   < clt 11296  cle 11297  cmin 11493  cn 12267  2c2 12322  cz 12615  +crp 13035  ...cfz 13548   mod cmo 13910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-fl 13833  df-mod 13911
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator