Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difmodm1lt Structured version   Visualization version   GIF version

Theorem difmodm1lt 46694
Description: The difference between an integer modulo a positive integer and the integer decreased by 1 modulo the same modulus is less than the modulus decreased by 1 (if the modulus is greater than 2). This theorem would not be valid for an odd 𝐴 and 𝑁 = 2, since ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) would be (1 − 0) = 1 which is not less than (𝑁 − 1) = 1. (Contributed by AV, 6-Jun-2012.)
Assertion
Ref Expression
difmodm1lt ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))

Proof of Theorem difmodm1lt
StepHypRef Expression
1 simpl 484 . . . 4 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (𝐴 mod 𝑁) = 1)
2 zre 12508 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
323ad2ant1 1134 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝐴 ∈ ℝ)
4 nnre 12165 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
543ad2ant2 1135 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 ∈ ℝ)
6 1lt2 12329 . . . . . . . . . . 11 1 < 2
7 1red 11161 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 1 ∈ ℝ)
8 2re 12232 . . . . . . . . . . . . . 14 2 ∈ ℝ
98a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 2 ∈ ℝ)
107, 9, 43jca 1129 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ))
11 lttr 11236 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 < 𝑁) → 1 < 𝑁))
1210, 11syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((1 < 2 ∧ 2 < 𝑁) → 1 < 𝑁))
136, 12mpani 695 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 < 𝑁 → 1 < 𝑁))
1413a1i 11 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝑁 ∈ ℕ → (2 < 𝑁 → 1 < 𝑁)))
15143imp 1112 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 < 𝑁)
163, 5, 153jca 1129 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁))
1716adantl 483 . . . . . 6 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁))
18 m1mod0mod1 45647 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))
1917, 18syl 17 . . . . 5 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))
201, 19mpbird 257 . . . 4 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 − 1) mod 𝑁) = 0)
211, 20oveq12d 7376 . . 3 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) = (1 − 0))
22 df-2 12221 . . . . . . . . . 10 2 = (1 + 1)
2322breq1i 5113 . . . . . . . . 9 (2 < 𝑁 ↔ (1 + 1) < 𝑁)
2423biimpi 215 . . . . . . . 8 (2 < 𝑁 → (1 + 1) < 𝑁)
2524adantl 483 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 + 1) < 𝑁)
26 1red 11161 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 ∈ ℝ)
274adantr 482 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 ∈ ℝ)
2826, 26, 27ltaddsub2d 11761 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((1 + 1) < 𝑁 ↔ 1 < (𝑁 − 1)))
2925, 28mpbid 231 . . . . . 6 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 < (𝑁 − 1))
30 1m0e1 12279 . . . . . . 7 (1 − 0) = 1
3130breq1i 5113 . . . . . 6 ((1 − 0) < (𝑁 − 1) ↔ 1 < (𝑁 − 1))
3229, 31sylibr 233 . . . . 5 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 − 0) < (𝑁 − 1))
33323adant1 1131 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 − 0) < (𝑁 − 1))
3433adantl 483 . . 3 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (1 − 0) < (𝑁 − 1))
3521, 34eqbrtrd 5128 . 2 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))
36 zmodfz 13804 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 mod 𝑁) ∈ (0...(𝑁 − 1)))
37363adant3 1133 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 mod 𝑁) ∈ (0...(𝑁 − 1)))
38 elfzle2 13451 . . . . . 6 ((𝐴 mod 𝑁) ∈ (0...(𝑁 − 1)) → (𝐴 mod 𝑁) ≤ (𝑁 − 1))
3937, 38syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 mod 𝑁) ≤ (𝑁 − 1))
4039adantl 483 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (𝐴 mod 𝑁) ≤ (𝑁 − 1))
41 nnrp 12931 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
42413ad2ant2 1135 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 ∈ ℝ+)
433, 42modcld 13786 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 mod 𝑁) ∈ ℝ)
44 peano2rem 11473 . . . . . . . . 9 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
454, 44syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
46453ad2ant2 1135 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝑁 − 1) ∈ ℝ)
47 peano2zm 12551 . . . . . . . . . 10 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
4847zred 12612 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℝ)
49483ad2ant1 1134 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 − 1) ∈ ℝ)
5049, 42modcld 13786 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 − 1) mod 𝑁) ∈ ℝ)
5143, 46, 503jca 1129 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ))
5251adantl 483 . . . . 5 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ))
53 lesub1 11654 . . . . 5 (((𝐴 mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ) → ((𝐴 mod 𝑁) ≤ (𝑁 − 1) ↔ ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁))))
5452, 53syl 17 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) ≤ (𝑁 − 1) ↔ ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁))))
5540, 54mpbid 231 . . 3 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)))
5649, 42jca 513 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+))
5756adantl 483 . . . . . . 7 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+))
58 modge0 13790 . . . . . . 7 (((𝐴 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → 0 ≤ ((𝐴 − 1) mod 𝑁))
5957, 58syl 17 . . . . . 6 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → 0 ≤ ((𝐴 − 1) mod 𝑁))
6016, 18syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))
6160bicomd 222 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) = 1 ↔ ((𝐴 − 1) mod 𝑁) = 0))
6261notbid 318 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (¬ (𝐴 mod 𝑁) = 1 ↔ ¬ ((𝐴 − 1) mod 𝑁) = 0))
6362biimpac 480 . . . . . . 7 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ¬ ((𝐴 − 1) mod 𝑁) = 0)
6463neqned 2947 . . . . . 6 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 − 1) mod 𝑁) ≠ 0)
6559, 64jca 513 . . . . 5 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (0 ≤ ((𝐴 − 1) mod 𝑁) ∧ ((𝐴 − 1) mod 𝑁) ≠ 0))
66 0red 11163 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 0 ∈ ℝ)
6766, 50jca 513 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (0 ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ))
6867adantl 483 . . . . . 6 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (0 ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ))
69 ltlen 11261 . . . . . 6 ((0 ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ) → (0 < ((𝐴 − 1) mod 𝑁) ↔ (0 ≤ ((𝐴 − 1) mod 𝑁) ∧ ((𝐴 − 1) mod 𝑁) ≠ 0)))
7068, 69syl 17 . . . . 5 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (0 < ((𝐴 − 1) mod 𝑁) ↔ (0 ≤ ((𝐴 − 1) mod 𝑁) ∧ ((𝐴 − 1) mod 𝑁) ≠ 0)))
7165, 70mpbird 257 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → 0 < ((𝐴 − 1) mod 𝑁))
7250, 46jca 513 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (((𝐴 − 1) mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ))
7372adantl 483 . . . . 5 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (((𝐴 − 1) mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ))
74 ltsubpos 11652 . . . . 5 ((((𝐴 − 1) mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ) → (0 < ((𝐴 − 1) mod 𝑁) ↔ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)))
7573, 74syl 17 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (0 < ((𝐴 − 1) mod 𝑁) ↔ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)))
7671, 75mpbid 231 . . 3 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))
7743, 50resubcld 11588 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ)
7846, 50resubcld 11588 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ)
7977, 78, 463jca 1129 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ))
8079adantl 483 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ))
81 lelttr 11250 . . . 4 ((((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ) → ((((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)))
8280, 81syl 17 . . 3 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)))
8355, 76, 82mp2and 698 . 2 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))
8435, 83pm2.61ian 811 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2940   class class class wbr 5106  (class class class)co 7358  cr 11055  0cc0 11056  1c1 11057   + caddc 11059   < clt 11194  cle 11195  cmin 11390  cn 12158  2c2 12213  cz 12504  +crp 12920  ...cfz 13430   mod cmo 13780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-sup 9383  df-inf 9384  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-2 12221  df-n0 12419  df-z 12505  df-uz 12769  df-rp 12921  df-fz 13431  df-fl 13703  df-mod 13781
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator