Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difmodm1lt Structured version   Visualization version   GIF version

Theorem difmodm1lt 47521
Description: The difference between an integer modulo a positive integer and the integer decreased by 1 modulo the same modulus is less than the modulus decreased by 1 (if the modulus is greater than 2). This theorem would not be valid for an odd 𝐴 and 𝑁 = 2, since ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) would be (1 − 0) = 1 which is not less than (𝑁 − 1) = 1. (Contributed by AV, 6-Jun-2012.) (Proof shortened by SN, 27-Nov-2025.)
Assertion
Ref Expression
difmodm1lt ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))

Proof of Theorem difmodm1lt
StepHypRef Expression
1 peano2zm 12525 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
213ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 − 1) ∈ ℤ)
32zred 12587 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 − 1) ∈ ℝ)
4 nnrp 12908 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
543ad2ant2 1134 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 ∈ ℝ+)
63, 5modcld 13786 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 − 1) mod 𝑁) ∈ ℝ)
76recnd 11151 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 − 1) mod 𝑁) ∈ ℂ)
8 zre 12483 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
983ad2ant1 1133 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝐴 ∈ ℝ)
109, 5modcld 13786 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 mod 𝑁) ∈ ℝ)
1110recnd 11151 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 mod 𝑁) ∈ ℂ)
127, 11negsubdi2d 11499 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → -(((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)))
13 m1modmmod 47520 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1))
14133adant3 1132 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1))
1514negeqd 11365 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → -(((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = -if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1))
1612, 15eqtr3d 2770 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) = -if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1))
17 iftrue 4482 . . . . . 6 ((𝐴 mod 𝑁) = 0 → if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1) = (𝑁 − 1))
1817adantr 480 . . . . 5 (((𝐴 mod 𝑁) = 0 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1) = (𝑁 − 1))
1918negeqd 11365 . . . 4 (((𝐴 mod 𝑁) = 0 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → -if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1) = -(𝑁 − 1))
20 1red 11124 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 ∈ ℝ)
21 2re 12210 . . . . . . . . 9 2 ∈ ℝ
2221a1i 11 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 2 ∈ ℝ)
23 nnre 12143 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
24233ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 ∈ ℝ)
25 1lt2 12302 . . . . . . . . 9 1 < 2
2625a1i 11 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 < 2)
27 simp3 1138 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 2 < 𝑁)
2820, 22, 24, 26, 27lttrd 11285 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 < 𝑁)
29 difrp 12936 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (1 < 𝑁 ↔ (𝑁 − 1) ∈ ℝ+))
3020, 24, 29syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 < 𝑁 ↔ (𝑁 − 1) ∈ ℝ+))
3128, 30mpbid 232 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝑁 − 1) ∈ ℝ+)
32 neglt 12916 . . . . . 6 ((𝑁 − 1) ∈ ℝ+ → -(𝑁 − 1) < (𝑁 − 1))
3331, 32syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → -(𝑁 − 1) < (𝑁 − 1))
3433adantl 481 . . . 4 (((𝐴 mod 𝑁) = 0 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → -(𝑁 − 1) < (𝑁 − 1))
3519, 34eqbrtrd 5117 . . 3 (((𝐴 mod 𝑁) = 0 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → -if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1) < (𝑁 − 1))
36 iffalse 4485 . . . . . 6 (¬ (𝐴 mod 𝑁) = 0 → if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1) = -1)
3736adantr 480 . . . . 5 ((¬ (𝐴 mod 𝑁) = 0 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1) = -1)
3837negeqd 11365 . . . 4 ((¬ (𝐴 mod 𝑁) = 0 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → -if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1) = --1)
39 negneg1e1 12125 . . . . . 6 --1 = 1
40 df-2 12199 . . . . . . . . . 10 2 = (1 + 1)
4140breq1i 5102 . . . . . . . . 9 (2 < 𝑁 ↔ (1 + 1) < 𝑁)
4241biimpi 216 . . . . . . . 8 (2 < 𝑁 → (1 + 1) < 𝑁)
43423ad2ant3 1135 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 + 1) < 𝑁)
4420, 20, 24ltaddsub2d 11729 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((1 + 1) < 𝑁 ↔ 1 < (𝑁 − 1)))
4543, 44mpbid 232 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 < (𝑁 − 1))
4639, 45eqbrtrid 5130 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → --1 < (𝑁 − 1))
4746adantl 481 . . . 4 ((¬ (𝐴 mod 𝑁) = 0 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → --1 < (𝑁 − 1))
4838, 47eqbrtrd 5117 . . 3 ((¬ (𝐴 mod 𝑁) = 0 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → -if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1) < (𝑁 − 1))
4935, 48pm2.61ian 811 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → -if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1) < (𝑁 − 1))
5016, 49eqbrtrd 5117 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  ifcif 4476   class class class wbr 5095  (class class class)co 7355  cr 11016  0cc0 11017  1c1 11018   + caddc 11020   < clt 11157  cmin 11355  -cneg 11356  cn 12136  2c2 12191  cz 12479  +crp 12896   mod cmo 13780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9337  df-inf 9338  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator