Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  m1mod0mod1 Structured version   Visualization version   GIF version

Theorem m1mod0mod1 42371
Description: An integer decreased by 1 is 0 modulo a positive integer iff the integer is 1 modulo the same modulus. (Contributed by AV, 6-Jun-2020.)
Assertion
Ref Expression
m1mod0mod1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))

Proof of Theorem m1mod0mod1
StepHypRef Expression
1 recn 10362 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 npcan1 10800 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝐴 − 1) + 1) = 𝐴)
32eqcomd 2784 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 = ((𝐴 − 1) + 1))
41, 3syl 17 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 = ((𝐴 − 1) + 1))
543ad2ant1 1124 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝐴 = ((𝐴 − 1) + 1))
65adantr 474 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → 𝐴 = ((𝐴 − 1) + 1))
76oveq1d 6937 . . 3 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (𝐴 mod 𝑁) = (((𝐴 − 1) + 1) mod 𝑁))
8 simpr 479 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((𝐴 − 1) mod 𝑁) = 0)
9 1mod 13021 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
1093adant1 1121 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
1110adantr 474 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (1 mod 𝑁) = 1)
128, 11oveq12d 6940 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (((𝐴 − 1) mod 𝑁) + (1 mod 𝑁)) = (0 + 1))
1312oveq1d 6937 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((((𝐴 − 1) mod 𝑁) + (1 mod 𝑁)) mod 𝑁) = ((0 + 1) mod 𝑁))
14 peano2rem 10690 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
15143ad2ant1 1124 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (𝐴 − 1) ∈ ℝ)
16 1red 10377 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → 1 ∈ ℝ)
17 simpl 476 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ∈ ℝ)
18 0lt1 10897 . . . . . . . . . . 11 0 < 1
19 0re 10378 . . . . . . . . . . . 12 0 ∈ ℝ
20 1re 10376 . . . . . . . . . . . 12 1 ∈ ℝ
21 lttr 10453 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝑁) → 0 < 𝑁))
2219, 20, 21mp3an12 1524 . . . . . . . . . . 11 (𝑁 ∈ ℝ → ((0 < 1 ∧ 1 < 𝑁) → 0 < 𝑁))
2318, 22mpani 686 . . . . . . . . . 10 (𝑁 ∈ ℝ → (1 < 𝑁 → 0 < 𝑁))
2423imp 397 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → 0 < 𝑁)
2517, 24elrpd 12178 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ∈ ℝ+)
26253adant1 1121 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ∈ ℝ+)
2715, 16, 263jca 1119 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((𝐴 − 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+))
2827adantr 474 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((𝐴 − 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+))
29 modaddabs 13027 . . . . 5 (((𝐴 − 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((((𝐴 − 1) mod 𝑁) + (1 mod 𝑁)) mod 𝑁) = (((𝐴 − 1) + 1) mod 𝑁))
3028, 29syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((((𝐴 − 1) mod 𝑁) + (1 mod 𝑁)) mod 𝑁) = (((𝐴 − 1) + 1) mod 𝑁))
31 0p1e1 11504 . . . . . . . 8 (0 + 1) = 1
3231oveq1i 6932 . . . . . . 7 ((0 + 1) mod 𝑁) = (1 mod 𝑁)
3332, 9syl5eq 2826 . . . . . 6 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((0 + 1) mod 𝑁) = 1)
34333adant1 1121 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((0 + 1) mod 𝑁) = 1)
3534adantr 474 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((0 + 1) mod 𝑁) = 1)
3613, 30, 353eqtr3d 2822 . . 3 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (((𝐴 − 1) + 1) mod 𝑁) = 1)
377, 36eqtrd 2814 . 2 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (𝐴 mod 𝑁) = 1)
38 simpr 479 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → (𝐴 mod 𝑁) = 1)
3938eqcomd 2784 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → 1 = (𝐴 mod 𝑁))
4039oveq2d 6938 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → (𝐴 − 1) = (𝐴 − (𝐴 mod 𝑁)))
4140oveq1d 6937 . . 3 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → ((𝐴 − 1) mod 𝑁) = ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁))
42 simp1 1127 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝐴 ∈ ℝ)
4342, 26modcld 12993 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (𝐴 mod 𝑁) ∈ ℝ)
4443recnd 10405 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (𝐴 mod 𝑁) ∈ ℂ)
4544subidd 10722 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((𝐴 mod 𝑁) − (𝐴 mod 𝑁)) = 0)
4645oveq1d 6937 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 mod 𝑁) − (𝐴 mod 𝑁)) mod 𝑁) = (0 mod 𝑁))
47 modsubmod 13047 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 mod 𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((𝐴 mod 𝑁) − (𝐴 mod 𝑁)) mod 𝑁) = ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁))
4842, 43, 26, 47syl3anc 1439 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 mod 𝑁) − (𝐴 mod 𝑁)) mod 𝑁) = ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁))
49 0mod 13020 . . . . . 6 (𝑁 ∈ ℝ+ → (0 mod 𝑁) = 0)
5026, 49syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (0 mod 𝑁) = 0)
5146, 48, 503eqtr3d 2822 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁) = 0)
5251adantr 474 . . 3 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁) = 0)
5341, 52eqtrd 2814 . 2 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → ((𝐴 − 1) mod 𝑁) = 0)
5437, 53impbida 791 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107   class class class wbr 4886  (class class class)co 6922  cc 10270  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   < clt 10411  cmin 10606  +crp 12137   mod cmo 12987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-fl 12912  df-mod 12988
This theorem is referenced by:  dfodd4  42596  difmodm1lt  43332
  Copyright terms: Public domain W3C validator