Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  m1mod0mod1 Structured version   Visualization version   GIF version

Theorem m1mod0mod1 47356
Description: An integer decreased by 1 is 0 modulo a positive integer iff the integer is 1 modulo the same modulus. (Contributed by AV, 6-Jun-2020.)
Assertion
Ref Expression
m1mod0mod1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))

Proof of Theorem m1mod0mod1
StepHypRef Expression
1 recn 11245 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 npcan1 11688 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝐴 − 1) + 1) = 𝐴)
32eqcomd 2743 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 = ((𝐴 − 1) + 1))
41, 3syl 17 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 = ((𝐴 − 1) + 1))
543ad2ant1 1134 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝐴 = ((𝐴 − 1) + 1))
65adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → 𝐴 = ((𝐴 − 1) + 1))
76oveq1d 7446 . . 3 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (𝐴 mod 𝑁) = (((𝐴 − 1) + 1) mod 𝑁))
8 simpr 484 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((𝐴 − 1) mod 𝑁) = 0)
9 1mod 13943 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
1093adant1 1131 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
1110adantr 480 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (1 mod 𝑁) = 1)
128, 11oveq12d 7449 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (((𝐴 − 1) mod 𝑁) + (1 mod 𝑁)) = (0 + 1))
1312oveq1d 7446 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((((𝐴 − 1) mod 𝑁) + (1 mod 𝑁)) mod 𝑁) = ((0 + 1) mod 𝑁))
14 peano2rem 11576 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
15143ad2ant1 1134 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (𝐴 − 1) ∈ ℝ)
16 1red 11262 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → 1 ∈ ℝ)
17 simpl 482 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ∈ ℝ)
18 0lt1 11785 . . . . . . . . . . 11 0 < 1
19 0re 11263 . . . . . . . . . . . 12 0 ∈ ℝ
20 1re 11261 . . . . . . . . . . . 12 1 ∈ ℝ
21 lttr 11337 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝑁) → 0 < 𝑁))
2219, 20, 21mp3an12 1453 . . . . . . . . . . 11 (𝑁 ∈ ℝ → ((0 < 1 ∧ 1 < 𝑁) → 0 < 𝑁))
2318, 22mpani 696 . . . . . . . . . 10 (𝑁 ∈ ℝ → (1 < 𝑁 → 0 < 𝑁))
2423imp 406 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → 0 < 𝑁)
2517, 24elrpd 13074 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ∈ ℝ+)
26253adant1 1131 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ∈ ℝ+)
2715, 16, 263jca 1129 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((𝐴 − 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+))
2827adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((𝐴 − 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+))
29 modaddabs 13949 . . . . 5 (((𝐴 − 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((((𝐴 − 1) mod 𝑁) + (1 mod 𝑁)) mod 𝑁) = (((𝐴 − 1) + 1) mod 𝑁))
3028, 29syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((((𝐴 − 1) mod 𝑁) + (1 mod 𝑁)) mod 𝑁) = (((𝐴 − 1) + 1) mod 𝑁))
31 0p1e1 12388 . . . . . . . 8 (0 + 1) = 1
3231oveq1i 7441 . . . . . . 7 ((0 + 1) mod 𝑁) = (1 mod 𝑁)
3332, 9eqtrid 2789 . . . . . 6 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((0 + 1) mod 𝑁) = 1)
34333adant1 1131 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((0 + 1) mod 𝑁) = 1)
3534adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((0 + 1) mod 𝑁) = 1)
3613, 30, 353eqtr3d 2785 . . 3 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (((𝐴 − 1) + 1) mod 𝑁) = 1)
377, 36eqtrd 2777 . 2 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (𝐴 mod 𝑁) = 1)
38 simpr 484 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → (𝐴 mod 𝑁) = 1)
3938eqcomd 2743 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → 1 = (𝐴 mod 𝑁))
4039oveq2d 7447 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → (𝐴 − 1) = (𝐴 − (𝐴 mod 𝑁)))
4140oveq1d 7446 . . 3 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → ((𝐴 − 1) mod 𝑁) = ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁))
42 simp1 1137 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝐴 ∈ ℝ)
4342, 26modcld 13915 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (𝐴 mod 𝑁) ∈ ℝ)
4443recnd 11289 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (𝐴 mod 𝑁) ∈ ℂ)
4544subidd 11608 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((𝐴 mod 𝑁) − (𝐴 mod 𝑁)) = 0)
4645oveq1d 7446 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 mod 𝑁) − (𝐴 mod 𝑁)) mod 𝑁) = (0 mod 𝑁))
47 modsubmod 13970 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 mod 𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((𝐴 mod 𝑁) − (𝐴 mod 𝑁)) mod 𝑁) = ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁))
4842, 43, 26, 47syl3anc 1373 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 mod 𝑁) − (𝐴 mod 𝑁)) mod 𝑁) = ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁))
49 0mod 13942 . . . . . 6 (𝑁 ∈ ℝ+ → (0 mod 𝑁) = 0)
5026, 49syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (0 mod 𝑁) = 0)
5146, 48, 503eqtr3d 2785 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁) = 0)
5251adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁) = 0)
5341, 52eqtrd 2777 . 2 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → ((𝐴 − 1) mod 𝑁) = 0)
5437, 53impbida 801 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cmin 11492  +crp 13034   mod cmo 13909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fl 13832  df-mod 13910
This theorem is referenced by:  dfodd4  47646  difmodm1lt  48443
  Copyright terms: Public domain W3C validator