Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  m1mod0mod1 Structured version   Visualization version   GIF version

Theorem m1mod0mod1 47328
Description: An integer decreased by 1 is 0 modulo a positive integer iff the integer is 1 modulo the same modulus. (Contributed by AV, 6-Jun-2020.)
Assertion
Ref Expression
m1mod0mod1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))

Proof of Theorem m1mod0mod1
StepHypRef Expression
1 recn 11134 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 npcan1 11579 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝐴 − 1) + 1) = 𝐴)
32eqcomd 2735 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 = ((𝐴 − 1) + 1))
41, 3syl 17 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 = ((𝐴 − 1) + 1))
543ad2ant1 1133 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝐴 = ((𝐴 − 1) + 1))
65adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → 𝐴 = ((𝐴 − 1) + 1))
76oveq1d 7384 . . 3 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (𝐴 mod 𝑁) = (((𝐴 − 1) + 1) mod 𝑁))
8 simpr 484 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((𝐴 − 1) mod 𝑁) = 0)
9 1mod 13841 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
1093adant1 1130 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
1110adantr 480 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (1 mod 𝑁) = 1)
128, 11oveq12d 7387 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (((𝐴 − 1) mod 𝑁) + (1 mod 𝑁)) = (0 + 1))
1312oveq1d 7384 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((((𝐴 − 1) mod 𝑁) + (1 mod 𝑁)) mod 𝑁) = ((0 + 1) mod 𝑁))
14 peano2rem 11465 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
15143ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (𝐴 − 1) ∈ ℝ)
16 1red 11151 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → 1 ∈ ℝ)
17 simpl 482 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ∈ ℝ)
18 0lt1 11676 . . . . . . . . . . 11 0 < 1
19 0re 11152 . . . . . . . . . . . 12 0 ∈ ℝ
20 1re 11150 . . . . . . . . . . . 12 1 ∈ ℝ
21 lttr 11226 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝑁) → 0 < 𝑁))
2219, 20, 21mp3an12 1453 . . . . . . . . . . 11 (𝑁 ∈ ℝ → ((0 < 1 ∧ 1 < 𝑁) → 0 < 𝑁))
2318, 22mpani 696 . . . . . . . . . 10 (𝑁 ∈ ℝ → (1 < 𝑁 → 0 < 𝑁))
2423imp 406 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → 0 < 𝑁)
2517, 24elrpd 12968 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ∈ ℝ+)
26253adant1 1130 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ∈ ℝ+)
2715, 16, 263jca 1128 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((𝐴 − 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+))
2827adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((𝐴 − 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+))
29 modaddabs 13849 . . . . 5 (((𝐴 − 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((((𝐴 − 1) mod 𝑁) + (1 mod 𝑁)) mod 𝑁) = (((𝐴 − 1) + 1) mod 𝑁))
3028, 29syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((((𝐴 − 1) mod 𝑁) + (1 mod 𝑁)) mod 𝑁) = (((𝐴 − 1) + 1) mod 𝑁))
31 0p1e1 12279 . . . . . . . 8 (0 + 1) = 1
3231oveq1i 7379 . . . . . . 7 ((0 + 1) mod 𝑁) = (1 mod 𝑁)
3332, 9eqtrid 2776 . . . . . 6 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((0 + 1) mod 𝑁) = 1)
34333adant1 1130 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((0 + 1) mod 𝑁) = 1)
3534adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((0 + 1) mod 𝑁) = 1)
3613, 30, 353eqtr3d 2772 . . 3 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (((𝐴 − 1) + 1) mod 𝑁) = 1)
377, 36eqtrd 2764 . 2 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (𝐴 mod 𝑁) = 1)
38 simpr 484 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → (𝐴 mod 𝑁) = 1)
3938eqcomd 2735 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → 1 = (𝐴 mod 𝑁))
4039oveq2d 7385 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → (𝐴 − 1) = (𝐴 − (𝐴 mod 𝑁)))
4140oveq1d 7384 . . 3 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → ((𝐴 − 1) mod 𝑁) = ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁))
42 simp1 1136 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝐴 ∈ ℝ)
4342, 26modcld 13813 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (𝐴 mod 𝑁) ∈ ℝ)
4443recnd 11178 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (𝐴 mod 𝑁) ∈ ℂ)
4544subidd 11497 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((𝐴 mod 𝑁) − (𝐴 mod 𝑁)) = 0)
4645oveq1d 7384 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 mod 𝑁) − (𝐴 mod 𝑁)) mod 𝑁) = (0 mod 𝑁))
47 modsubmod 13870 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 mod 𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((𝐴 mod 𝑁) − (𝐴 mod 𝑁)) mod 𝑁) = ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁))
4842, 43, 26, 47syl3anc 1373 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 mod 𝑁) − (𝐴 mod 𝑁)) mod 𝑁) = ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁))
49 0mod 13840 . . . . . 6 (𝑁 ∈ ℝ+ → (0 mod 𝑁) = 0)
5026, 49syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (0 mod 𝑁) = 0)
5146, 48, 503eqtr3d 2772 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁) = 0)
5251adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁) = 0)
5341, 52eqtrd 2764 . 2 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → ((𝐴 − 1) mod 𝑁) = 0)
5437, 53impbida 800 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cmin 11381  +crp 12927   mod cmo 13807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fl 13730  df-mod 13808
This theorem is referenced by:  dfodd4  47633
  Copyright terms: Public domain W3C validator