| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1mod | Structured version Visualization version GIF version | ||
| Description: Special case: 1 modulo a real number greater than 1 is 1. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 1mod | ⊢ ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt1 11707 | . . . . . 6 ⊢ 0 < 1 | |
| 2 | 0re 11183 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 3 | 1re 11181 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 4 | lttr 11257 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝑁) → 0 < 𝑁)) | |
| 5 | 2, 3, 4 | mp3an12 1453 | . . . . . 6 ⊢ (𝑁 ∈ ℝ → ((0 < 1 ∧ 1 < 𝑁) → 0 < 𝑁)) |
| 6 | 1, 5 | mpani 696 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (1 < 𝑁 → 0 < 𝑁)) |
| 7 | 6 | imdistani 568 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (𝑁 ∈ ℝ ∧ 0 < 𝑁)) |
| 8 | elrp 12960 | . . . 4 ⊢ (𝑁 ∈ ℝ+ ↔ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) | |
| 9 | 7, 8 | sylibr 234 | . . 3 ⊢ ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ∈ ℝ+) |
| 10 | 9, 3 | jctil 519 | . 2 ⊢ ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 ∈ ℝ ∧ 𝑁 ∈ ℝ+)) |
| 11 | simpr 484 | . . 3 ⊢ ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → 1 < 𝑁) | |
| 12 | 0le1 11708 | . . 3 ⊢ 0 ≤ 1 | |
| 13 | 11, 12 | jctil 519 | . 2 ⊢ ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (0 ≤ 1 ∧ 1 < 𝑁)) |
| 14 | modid 13865 | . 2 ⊢ (((1 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 𝑁)) → (1 mod 𝑁) = 1) | |
| 15 | 10, 13, 14 | syl2anc 584 | 1 ⊢ ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 < clt 11215 ≤ cle 11216 ℝ+crp 12958 mod cmo 13838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fl 13761 df-mod 13839 |
| This theorem is referenced by: mulp1mod1 13883 p1modz1 16236 modm1div 16241 mod2eq1n2dvds 16324 vfermltl 16779 pockthlem 16883 pockthi 16885 sylow3lem6 19569 wilthlem1 26985 lgsne0 27253 gausslemma2dlem0i 27282 gausslemma2dlem7 27291 gausslemma2d 27292 numclwwlk5 30324 numclwwlk7 30327 ceil5half3 47345 m1mod0mod1 47359 fmtnoprmfac1lem 47569 fmtnoprmfac2lem1 47571 sfprmdvdsmersenne 47608 modexp2m1d 47617 4fppr1 47740 gpgprismgriedgdmss 48047 gpgprismgr4cycllem3 48091 digexp 48600 |
| Copyright terms: Public domain | W3C validator |