| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1mod | Structured version Visualization version GIF version | ||
| Description: Special case: 1 modulo a real number greater than 1 is 1. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 1mod | ⊢ ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt1 11646 | . . . . . 6 ⊢ 0 < 1 | |
| 2 | 0re 11121 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 3 | 1re 11119 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 4 | lttr 11196 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝑁) → 0 < 𝑁)) | |
| 5 | 2, 3, 4 | mp3an12 1453 | . . . . . 6 ⊢ (𝑁 ∈ ℝ → ((0 < 1 ∧ 1 < 𝑁) → 0 < 𝑁)) |
| 6 | 1, 5 | mpani 696 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (1 < 𝑁 → 0 < 𝑁)) |
| 7 | 6 | imdistani 568 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (𝑁 ∈ ℝ ∧ 0 < 𝑁)) |
| 8 | elrp 12894 | . . . 4 ⊢ (𝑁 ∈ ℝ+ ↔ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) | |
| 9 | 7, 8 | sylibr 234 | . . 3 ⊢ ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ∈ ℝ+) |
| 10 | 9, 3 | jctil 519 | . 2 ⊢ ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 ∈ ℝ ∧ 𝑁 ∈ ℝ+)) |
| 11 | simpr 484 | . . 3 ⊢ ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → 1 < 𝑁) | |
| 12 | 0le1 11647 | . . 3 ⊢ 0 ≤ 1 | |
| 13 | 11, 12 | jctil 519 | . 2 ⊢ ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (0 ≤ 1 ∧ 1 < 𝑁)) |
| 14 | modid 13802 | . 2 ⊢ (((1 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 𝑁)) → (1 mod 𝑁) = 1) | |
| 15 | 10, 13, 14 | syl2anc 584 | 1 ⊢ ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 (class class class)co 7352 ℝcr 11012 0cc0 11013 1c1 11014 < clt 11153 ≤ cle 11154 ℝ+crp 12892 mod cmo 13775 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fl 13698 df-mod 13776 |
| This theorem is referenced by: mulp1mod1 13820 p1modz1 16172 modm1div 16177 mod2eq1n2dvds 16260 vfermltl 16715 pockthlem 16819 pockthi 16821 sylow3lem6 19546 wilthlem1 27006 lgsne0 27274 gausslemma2dlem0i 27303 gausslemma2dlem7 27312 gausslemma2d 27313 numclwwlk5 30370 numclwwlk7 30373 ceil5half3 47464 m1mod0mod1 47478 fmtnoprmfac1lem 47688 fmtnoprmfac2lem1 47690 sfprmdvdsmersenne 47727 modexp2m1d 47736 4fppr1 47859 gpgprismgriedgdmss 48176 gpgprismgr4cycllem3 48221 gpg5edgnedg 48254 digexp 48732 |
| Copyright terms: Public domain | W3C validator |