MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnrecgt0 Structured version   Visualization version   GIF version

Theorem nnrecgt0 12283
Description: The reciprocal of a positive integer is positive. (Contributed by NM, 25-Aug-1999.)
Assertion
Ref Expression
nnrecgt0 (𝐴 ∈ ℕ → 0 < (1 / 𝐴))

Proof of Theorem nnrecgt0
StepHypRef Expression
1 nnge1 12268 . 2 (𝐴 ∈ ℕ → 1 ≤ 𝐴)
2 0lt1 11764 . . 3 0 < 1
3 nnre 12247 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
4 0re 11244 . . . . . 6 0 ∈ ℝ
5 1re 11242 . . . . . 6 1 ∈ ℝ
6 ltletr 11334 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < 𝐴))
74, 5, 6mp3an12 1447 . . . . 5 (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < 𝐴))
8 recgt0 12088 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))
98ex 411 . . . . 5 (𝐴 ∈ ℝ → (0 < 𝐴 → 0 < (1 / 𝐴)))
107, 9syld 47 . . . 4 (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < (1 / 𝐴)))
113, 10syl 17 . . 3 (𝐴 ∈ ℕ → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < (1 / 𝐴)))
122, 11mpani 694 . 2 (𝐴 ∈ ℕ → (1 ≤ 𝐴 → 0 < (1 / 𝐴)))
131, 12mpd 15 1 (𝐴 ∈ ℕ → 0 < (1 / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2098   class class class wbr 5141  (class class class)co 7414  cr 11135  0cc0 11136  1c1 11137   < clt 11276  cle 11277   / cdiv 11899  cn 12240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241
This theorem is referenced by:  itg2gt0  25706  minvecolem5  30707  lcmineqlem15  41542
  Copyright terms: Public domain W3C validator