HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shlesb1i Structured version   Visualization version   GIF version

Theorem shlesb1i 31143
Description: Hilbert lattice ordering in terms of subspace sum. (Contributed by NM, 23-Nov-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
shlesb1.1 𝐴S
shlesb1.2 𝐵S
Assertion
Ref Expression
shlesb1i (𝐴𝐵 ↔ (𝐴 + 𝐵) = 𝐵)

Proof of Theorem shlesb1i
StepHypRef Expression
1 ssid 3999 . . 3 𝐵𝐵
21biantrur 530 . 2 (𝐴𝐵 ↔ (𝐵𝐵𝐴𝐵))
3 shlesb1.2 . . 3 𝐵S
4 shlesb1.1 . . 3 𝐴S
53, 4, 3shslubi 31142 . 2 ((𝐵𝐵𝐴𝐵) ↔ (𝐵 + 𝐴) ⊆ 𝐵)
63, 4shsub2i 31130 . . . 4 𝐵 ⊆ (𝐴 + 𝐵)
7 eqss 3992 . . . 4 ((𝐴 + 𝐵) = 𝐵 ↔ ((𝐴 + 𝐵) ⊆ 𝐵𝐵 ⊆ (𝐴 + 𝐵)))
86, 7mpbiran2 707 . . 3 ((𝐴 + 𝐵) = 𝐵 ↔ (𝐴 + 𝐵) ⊆ 𝐵)
94, 3shscomi 31120 . . . 4 (𝐴 + 𝐵) = (𝐵 + 𝐴)
109sseq1i 4005 . . 3 ((𝐴 + 𝐵) ⊆ 𝐵 ↔ (𝐵 + 𝐴) ⊆ 𝐵)
118, 10bitr2i 276 . 2 ((𝐵 + 𝐴) ⊆ 𝐵 ↔ (𝐴 + 𝐵) = 𝐵)
122, 5, 113bitri 297 1 (𝐴𝐵 ↔ (𝐴 + 𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1533  wcel 2098  wss 3943  (class class class)co 7404   S csh 30685   + cph 30688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-hilex 30756  ax-hfvadd 30757  ax-hvcom 30758  ax-hvass 30759  ax-hv0cl 30760  ax-hvaddid 30761  ax-hfvmul 30762  ax-hvmulid 30763  ax-hvdistr2 30766  ax-hvmul0 30767
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-ltxr 11254  df-sub 11447  df-neg 11448  df-grpo 30250  df-ablo 30302  df-hvsub 30728  df-sh 30964  df-shs 31065
This theorem is referenced by:  shmodsi  31146
  Copyright terms: Public domain W3C validator