HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shlesb1i Structured version   Visualization version   GIF version

Theorem shlesb1i 29169
Description: Hilbert lattice ordering in terms of subspace sum. (Contributed by NM, 23-Nov-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
shlesb1.1 𝐴S
shlesb1.2 𝐵S
Assertion
Ref Expression
shlesb1i (𝐴𝐵 ↔ (𝐴 + 𝐵) = 𝐵)

Proof of Theorem shlesb1i
StepHypRef Expression
1 ssid 3937 . . 3 𝐵𝐵
21biantrur 534 . 2 (𝐴𝐵 ↔ (𝐵𝐵𝐴𝐵))
3 shlesb1.2 . . 3 𝐵S
4 shlesb1.1 . . 3 𝐴S
53, 4, 3shslubi 29168 . 2 ((𝐵𝐵𝐴𝐵) ↔ (𝐵 + 𝐴) ⊆ 𝐵)
63, 4shsub2i 29156 . . . 4 𝐵 ⊆ (𝐴 + 𝐵)
7 eqss 3930 . . . 4 ((𝐴 + 𝐵) = 𝐵 ↔ ((𝐴 + 𝐵) ⊆ 𝐵𝐵 ⊆ (𝐴 + 𝐵)))
86, 7mpbiran2 709 . . 3 ((𝐴 + 𝐵) = 𝐵 ↔ (𝐴 + 𝐵) ⊆ 𝐵)
94, 3shscomi 29146 . . . 4 (𝐴 + 𝐵) = (𝐵 + 𝐴)
109sseq1i 3943 . . 3 ((𝐴 + 𝐵) ⊆ 𝐵 ↔ (𝐵 + 𝐴) ⊆ 𝐵)
118, 10bitr2i 279 . 2 ((𝐵 + 𝐴) ⊆ 𝐵 ↔ (𝐴 + 𝐵) = 𝐵)
122, 5, 113bitri 300 1 (𝐴𝐵 ↔ (𝐴 + 𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wcel 2111  wss 3881  (class class class)co 7135   S csh 28711   + cph 28714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-hilex 28782  ax-hfvadd 28783  ax-hvcom 28784  ax-hvass 28785  ax-hv0cl 28786  ax-hvaddid 28787  ax-hfvmul 28788  ax-hvmulid 28789  ax-hvdistr2 28792  ax-hvmul0 28793
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-ltxr 10669  df-sub 10861  df-neg 10862  df-grpo 28276  df-ablo 28328  df-hvsub 28754  df-sh 28990  df-shs 29091
This theorem is referenced by:  shmodsi  29172
  Copyright terms: Public domain W3C validator