MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comraddd Structured version   Visualization version   GIF version

Theorem comraddd 11239
Description: Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.)
Hypotheses
Ref Expression
comraddd.1 (𝜑𝐵 ∈ ℂ)
comraddd.2 (𝜑𝐶 ∈ ℂ)
comraddd.3 (𝜑𝐴 = (𝐵 + 𝐶))
Assertion
Ref Expression
comraddd (𝜑𝐴 = (𝐶 + 𝐵))

Proof of Theorem comraddd
StepHypRef Expression
1 comraddd.3 . 2 (𝜑𝐴 = (𝐵 + 𝐶))
2 comraddd.1 . . 3 (𝜑𝐵 ∈ ℂ)
3 comraddd.2 . . 3 (𝜑𝐶 ∈ ℂ)
42, 3addcomd 11227 . 2 (𝜑 → (𝐵 + 𝐶) = (𝐶 + 𝐵))
51, 4eqtrd 2776 1 (𝜑𝐴 = (𝐶 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  (class class class)co 7307  cc 10919   + caddc 10924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11061  df-mnf 11062  df-ltxr 11064
This theorem is referenced by:  mvrladdd  11438  hashfz  14191  climaddc2  15394  clim2ser2  15416  fsumparts  15567  arisum  15621  pwdif  15629  cosneg  15905  coshval  15913  absefib  15956  mulgdir  18784  sylow1lem1  19252  ovolicc2lem4  24733  itgmulc2  25047  quad2  26038  cosasin  26103  dvatan  26134  scvxcvx  26184  lgamgulmlem3  26229  chpdifbndlem1  26750  pntrlog2bndlem6  26780  pntibndlem2  26788  axpasch  27358  eucrctshift  28656  signshf  32616  itg2addnclem3  35878  3cubeslem1  40701  mogoldbblem  45416  eenglngeehlnmlem1  46327  itscnhlc0yqe  46349
  Copyright terms: Public domain W3C validator