![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > comraddd | Structured version Visualization version GIF version |
Description: Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.) |
Ref | Expression |
---|---|
comraddd.1 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
comraddd.2 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
comraddd.3 | ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) |
Ref | Expression |
---|---|
comraddd | ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comraddd.3 | . 2 ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) | |
2 | comraddd.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | comraddd.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | 2, 3 | addcomd 11457 | . 2 ⊢ (𝜑 → (𝐵 + 𝐶) = (𝐶 + 𝐵)) |
5 | 1, 4 | eqtrd 2766 | 1 ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 (class class class)co 7416 ℂcc 11147 + caddc 11152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-po 5586 df-so 5587 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-ltxr 11294 |
This theorem is referenced by: mvrladdd 11668 hashfz 14439 climaddc2 15633 clim2ser2 15655 fsumparts 15805 arisum 15859 pwdif 15867 cosneg 16144 coshval 16152 absefib 16195 mulgdir 19096 sylow1lem1 19592 ovolicc2lem4 25537 itgmulc2 25851 quad2 26864 cosasin 26929 dvatan 26960 scvxcvx 27011 lgamgulmlem3 27056 chpdifbndlem1 27579 pntrlog2bndlem6 27609 pntibndlem2 27617 axpasch 28872 eucrctshift 30173 constrrtlc1 33605 signshf 34447 itg2addnclem3 37387 3cubeslem1 42378 mogoldbblem 47328 eenglngeehlnmlem1 48161 itscnhlc0yqe 48183 |
Copyright terms: Public domain | W3C validator |