MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comraddd Structured version   Visualization version   GIF version

Theorem comraddd 10847
Description: Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.)
Hypotheses
Ref Expression
comraddd.1 (𝜑𝐵 ∈ ℂ)
comraddd.2 (𝜑𝐶 ∈ ℂ)
comraddd.3 (𝜑𝐴 = (𝐵 + 𝐶))
Assertion
Ref Expression
comraddd (𝜑𝐴 = (𝐶 + 𝐵))

Proof of Theorem comraddd
StepHypRef Expression
1 comraddd.3 . 2 (𝜑𝐴 = (𝐵 + 𝐶))
2 comraddd.1 . . 3 (𝜑𝐵 ∈ ℂ)
3 comraddd.2 . . 3 (𝜑𝐶 ∈ ℂ)
42, 3addcomd 10835 . 2 (𝜑 → (𝐵 + 𝐶) = (𝐶 + 𝐵))
51, 4eqtrd 2836 1 (𝜑𝐴 = (𝐶 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2112  (class class class)co 7139  cc 10528   + caddc 10533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-ltxr 10673
This theorem is referenced by:  mvrladdd  11046  hashfz  13788  climaddc2  14987  clim2ser2  15007  fsumparts  15156  arisum  15210  pwdif  15218  cosneg  15495  coshval  15503  absefib  15546  mulgdir  18254  sylow1lem1  18718  ovolicc2lem4  24127  itgmulc2  24440  quad2  25428  cosasin  25493  dvatan  25524  scvxcvx  25574  lgamgulmlem3  25619  chpdifbndlem1  26140  pntrlog2bndlem6  26170  pntibndlem2  26178  axpasch  26738  eucrctshift  28031  signshf  31966  itg2addnclem3  35103  3cubeslem1  39612  mogoldbblem  44225  eenglngeehlnmlem1  45138  itscnhlc0yqe  45160
  Copyright terms: Public domain W3C validator