![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > naddss1 | Structured version Visualization version GIF version |
Description: Ordinal less-than-or-equal is not affected by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.) |
Ref | Expression |
---|---|
naddss1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | naddel1 8685 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐴 ↔ (𝐵 +no 𝐶) ∈ (𝐴 +no 𝐶))) | |
2 | 1 | 3com12 1120 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐴 ↔ (𝐵 +no 𝐶) ∈ (𝐴 +no 𝐶))) |
3 | 2 | notbid 318 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ 𝐵 ∈ 𝐴 ↔ ¬ (𝐵 +no 𝐶) ∈ (𝐴 +no 𝐶))) |
4 | ontri1 6391 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
5 | 4 | 3adant3 1129 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
6 | naddcl 8675 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no 𝐶) ∈ On) | |
7 | 6 | 3adant2 1128 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no 𝐶) ∈ On) |
8 | naddcl 8675 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) ∈ On) | |
9 | 8 | 3adant1 1127 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) ∈ On) |
10 | ontri1 6391 | . . 3 ⊢ (((𝐴 +no 𝐶) ∈ On ∧ (𝐵 +no 𝐶) ∈ On) → ((𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶) ↔ ¬ (𝐵 +no 𝐶) ∈ (𝐴 +no 𝐶))) | |
11 | 7, 9, 10 | syl2anc 583 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶) ↔ ¬ (𝐵 +no 𝐶) ∈ (𝐴 +no 𝐶))) |
12 | 3, 5, 11 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ w3a 1084 ∈ wcel 2098 ⊆ wss 3943 Oncon0 6357 (class class class)co 7404 +no cnadd 8663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-1st 7971 df-2nd 7972 df-frecs 8264 df-nadd 8664 |
This theorem is referenced by: naddss2 8688 naddunif 8691 mulsproplem13 27979 |
Copyright terms: Public domain | W3C validator |