Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddel2 Structured version   Visualization version   GIF version

Theorem naddel2 33828
Description: Ordinal less-than is not affected by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.)
Assertion
Ref Expression
naddel2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ (𝐶 +no 𝐴) ∈ (𝐶 +no 𝐵)))

Proof of Theorem naddel2
StepHypRef Expression
1 naddel1 33827 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶)))
2 naddcom 33823 . . . 4 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no 𝐶) = (𝐶 +no 𝐴))
323adant2 1130 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no 𝐶) = (𝐶 +no 𝐴))
4 naddcom 33823 . . . 4 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) = (𝐶 +no 𝐵))
543adant1 1129 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) = (𝐶 +no 𝐵))
63, 5eleq12d 2835 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶) ↔ (𝐶 +no 𝐴) ∈ (𝐶 +no 𝐵)))
71, 6bitrd 278 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ (𝐶 +no 𝐴) ∈ (𝐶 +no 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1542  wcel 2110  Oncon0 6264  (class class class)co 7269   +no cnadd 33812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-ov 7272  df-oprab 7273  df-mpo 7274  df-1st 7818  df-2nd 7819  df-frecs 8082  df-nadd 33813
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator