MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsumw Structured version   Visualization version   GIF version

Theorem nfsumw 15043
Description: Bound-variable hypothesis builder for sum: if 𝑥 is (effectively) not free in 𝐴 and 𝐵, it is not free in Σ𝑘𝐴𝐵. Version of nfsum 15044 with a disjoint variable condition, which does not require ax-13 2389. (Contributed by NM, 11-Dec-2005.) (Revised by Gino Giotto, 24-Feb-2024.)
Hypotheses
Ref Expression
nfsumw.1 𝑥𝐴
nfsumw.2 𝑥𝐵
Assertion
Ref Expression
nfsumw 𝑥Σ𝑘𝐴 𝐵
Distinct variable group:   𝑥,𝑘
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥,𝑘)

Proof of Theorem nfsumw
Dummy variables 𝑓 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sum 15039 . 2 Σ𝑘𝐴 𝐵 = (℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
2 nfcv 2976 . . . . 5 𝑥
3 nfsumw.1 . . . . . . 7 𝑥𝐴
4 nfcv 2976 . . . . . . 7 𝑥(ℤ𝑚)
53, 4nfss 3957 . . . . . 6 𝑥 𝐴 ⊆ (ℤ𝑚)
6 nfcv 2976 . . . . . . . 8 𝑥𝑚
7 nfcv 2976 . . . . . . . 8 𝑥 +
83nfcri 2970 . . . . . . . . . 10 𝑥 𝑛𝐴
9 nfcv 2976 . . . . . . . . . . 11 𝑥𝑛
10 nfsumw.2 . . . . . . . . . . 11 𝑥𝐵
119, 10nfcsbw 3906 . . . . . . . . . 10 𝑥𝑛 / 𝑘𝐵
12 nfcv 2976 . . . . . . . . . 10 𝑥0
138, 11, 12nfif 4493 . . . . . . . . 9 𝑥if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
142, 13nfmpt 5160 . . . . . . . 8 𝑥(𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
156, 7, 14nfseq 13377 . . . . . . 7 𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)))
16 nfcv 2976 . . . . . . 7 𝑥
17 nfcv 2976 . . . . . . 7 𝑥𝑧
1815, 16, 17nfbr 5110 . . . . . 6 𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧
195, 18nfan 1899 . . . . 5 𝑥(𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧)
202, 19nfrex 3308 . . . 4 𝑥𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧)
21 nfcv 2976 . . . . 5 𝑥
22 nfcv 2976 . . . . . . . 8 𝑥𝑓
23 nfcv 2976 . . . . . . . 8 𝑥(1...𝑚)
2422, 23, 3nff1o 6610 . . . . . . 7 𝑥 𝑓:(1...𝑚)–1-1-onto𝐴
25 nfcv 2976 . . . . . . . . . 10 𝑥1
26 nfcv 2976 . . . . . . . . . . . 12 𝑥(𝑓𝑛)
2726, 10nfcsbw 3906 . . . . . . . . . . 11 𝑥(𝑓𝑛) / 𝑘𝐵
2821, 27nfmpt 5160 . . . . . . . . . 10 𝑥(𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
2925, 7, 28nfseq 13377 . . . . . . . . 9 𝑥seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))
3029, 6nffv 6677 . . . . . . . 8 𝑥(seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
3130nfeq2 2994 . . . . . . 7 𝑥 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
3224, 31nfan 1899 . . . . . 6 𝑥(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3332nfex 2342 . . . . 5 𝑥𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3421, 33nfrex 3308 . . . 4 𝑥𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3520, 34nfor 1904 . . 3 𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
3635nfiotaw 6315 . 2 𝑥(℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
371, 36nfcxfr 2974 1 𝑥Σ𝑘𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 398  wo 843   = wceq 1536  wex 1779  wcel 2113  wnfc 2960  wrex 3138  csb 3880  wss 3933  ifcif 4464   class class class wbr 5063  cmpt 5143  cio 6309  1-1-ontowf1o 6351  cfv 6352  (class class class)co 7153  0cc0 10534  1c1 10535   + caddc 10537  cn 11635  cz 11979  cuz 12241  ...cfz 12890  seqcseq 13367  cli 14837  Σcsu 15038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3495  df-sbc 3771  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4465  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4836  df-br 5064  df-opab 5126  df-mpt 5144  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-pred 6145  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-ov 7156  df-oprab 7157  df-mpo 7158  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-seq 13368  df-sum 15039
This theorem is referenced by:  fsum2dlem  15121  fsumcom2  15125  fsumrlim  15162  fsumiun  15172  fsumcn  23474  fsum2cn  23475  nfitg1  24370  nfitg  24371  dvmptfsum  24570  fsumdvdscom  25760  binomcxplemdvsum  40761  binomcxplemnotnn0  40762  fsumcnf  41352  fsumiunss  41930  dvmptfprod  42304  sge0iunmptlemre  42771
  Copyright terms: Public domain W3C validator