Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nncn | Structured version Visualization version GIF version |
Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nncn | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnsscn 11679 | . 2 ⊢ ℕ ⊆ ℂ | |
2 | 1 | sseli 3888 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) |
Copyright terms: Public domain | W3C validator |