![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numth3 | Structured version Visualization version GIF version |
Description: All sets are well-orderable under choice. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
Ref | Expression |
---|---|
numth3 | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3493 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | cardeqv 10461 | . 2 ⊢ dom card = V | |
3 | 1, 2 | eleqtrrdi 2845 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3475 dom cdm 5676 cardccrd 9927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-ac2 10455 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7362 df-ov 7409 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-en 8937 df-card 9931 df-ac 10108 |
This theorem is referenced by: numth2 10463 ac5b 10470 ac6 10472 zorn2 10498 zorn 10499 zornn0 10500 ttukey 10510 fodomg 10514 wdomac 10519 iundom 10534 cardval 10538 cardid 10539 carden 10543 carddom 10546 cardsdom 10547 domtri 10548 sdomsdomcard 10552 infxpidm 10554 ondomon 10555 infmap 10568 aleph1irr 16186 lbsext 20769 hauspwdom 22997 filssufil 23408 ufilen 23426 minregex2 42272 |
Copyright terms: Public domain | W3C validator |