| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numth3 | Structured version Visualization version GIF version | ||
| Description: All sets are well-orderable under choice. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| Ref | Expression |
|---|---|
| numth3 | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ dom card) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3485 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | cardeqv 10488 | . 2 ⊢ dom card = V | |
| 3 | 1, 2 | eleqtrrdi 2846 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ dom card) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3464 dom cdm 5659 cardccrd 9954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-ac2 10482 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-en 8965 df-card 9958 df-ac 10135 |
| This theorem is referenced by: numth2 10490 ac5b 10497 ac6 10499 zorn2 10525 zorn 10526 zornn0 10527 ttukey 10537 fodomg 10541 wdomac 10546 iundom 10561 cardval 10565 cardid 10566 carden 10570 carddom 10573 cardsdom 10574 domtri 10575 sdomsdomcard 10579 infxpidm 10581 ondomon 10582 infmap 10595 aleph1irr 16269 lbsext 21129 hauspwdom 23444 filssufil 23855 ufilen 23873 minregex2 43526 |
| Copyright terms: Public domain | W3C validator |