MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numth3 Structured version   Visualization version   GIF version

Theorem numth3 10462
Description: All sets are well-orderable under choice. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
numth3 (𝐴𝑉𝐴 ∈ dom card)

Proof of Theorem numth3
StepHypRef Expression
1 elex 3493 . 2 (𝐴𝑉𝐴 ∈ V)
2 cardeqv 10461 . 2 dom card = V
31, 2eleqtrrdi 2845 1 (𝐴𝑉𝐴 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Vcvv 3475  dom cdm 5676  cardccrd 9927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-ac2 10455
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7362  df-ov 7409  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-en 8937  df-card 9931  df-ac 10108
This theorem is referenced by:  numth2  10463  ac5b  10470  ac6  10472  zorn2  10498  zorn  10499  zornn0  10500  ttukey  10510  fodomg  10514  wdomac  10519  iundom  10534  cardval  10538  cardid  10539  carden  10543  carddom  10546  cardsdom  10547  domtri  10548  sdomsdomcard  10552  infxpidm  10554  ondomon  10555  infmap  10568  aleph1irr  16186  lbsext  20769  hauspwdom  22997  filssufil  23408  ufilen  23426  minregex2  42272
  Copyright terms: Public domain W3C validator