MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numth3 Structured version   Visualization version   GIF version

Theorem numth3 10461
Description: All sets are well-orderable under choice. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
numth3 (𝐴𝑉𝐴 ∈ dom card)

Proof of Theorem numth3
StepHypRef Expression
1 elex 3492 . 2 (𝐴𝑉𝐴 ∈ V)
2 cardeqv 10460 . 2 dom card = V
31, 2eleqtrrdi 2844 1 (𝐴𝑉𝐴 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3474  dom cdm 5675  cardccrd 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-ac2 10454
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-en 8936  df-card 9930  df-ac 10107
This theorem is referenced by:  numth2  10462  ac5b  10469  ac6  10471  zorn2  10497  zorn  10498  zornn0  10499  ttukey  10509  fodomg  10513  wdomac  10518  iundom  10533  cardval  10537  cardid  10538  carden  10542  carddom  10545  cardsdom  10546  domtri  10547  sdomsdomcard  10551  infxpidm  10553  ondomon  10554  infmap  10567  aleph1irr  16185  lbsext  20768  hauspwdom  22996  filssufil  23407  ufilen  23425  minregex2  42271
  Copyright terms: Public domain W3C validator