Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > numth3 | Structured version Visualization version GIF version |
Description: All sets are well-orderable under choice. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
Ref | Expression |
---|---|
numth3 | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3426 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | cardeqv 10083 | . 2 ⊢ dom card = V | |
3 | 1, 2 | eleqtrrdi 2849 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 Vcvv 3408 dom cdm 5551 cardccrd 9551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-ac2 10077 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-wrecs 8047 df-recs 8108 df-en 8627 df-card 9555 df-ac 9730 |
This theorem is referenced by: numth2 10085 ac5b 10092 ac6 10094 zorn2 10120 zorn 10121 zornn0 10122 ttukey 10132 fodomg 10136 wdomac 10141 iundom 10156 cardval 10160 cardid 10161 carden 10165 carddom 10168 cardsdom 10169 domtri 10170 sdomsdomcard 10174 infxpidm 10176 ondomon 10177 infmap 10190 aleph1irr 15807 lbsext 20200 hauspwdom 22398 filssufil 22809 ufilen 22827 |
Copyright terms: Public domain | W3C validator |