Step | Hyp | Ref
| Expression |
1 | | simpll 763 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐴 ∈ 𝑉) |
2 | | simplr 765 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐹:𝐴⟶ℂ) |
3 | 2 | ffnd 6585 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐹 Fn 𝐴) |
4 | | simprl 767 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐺:𝐴⟶(ℂ ∖
{0})) |
5 | 4 | ffnd 6585 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐺 Fn 𝐴) |
6 | | simprr 769 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐻:𝐴⟶(ℂ ∖
{0})) |
7 | 6 | ffnd 6585 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐻 Fn 𝐴) |
8 | | inidm 4149 |
. . 3
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
9 | 5, 7, 1, 1, 8 | offn 7524 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) →
(𝐺 ∘f /
𝐻) Fn 𝐴) |
10 | 3, 7, 1, 1, 8 | offn 7524 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) →
(𝐹 ∘f
· 𝐻) Fn 𝐴) |
11 | 10, 5, 1, 1, 8 | offn 7524 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) →
((𝐹 ∘f
· 𝐻)
∘f / 𝐺) Fn
𝐴) |
12 | | eqidd 2739 |
. 2
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
13 | | eqidd 2739 |
. 2
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → ((𝐺 ∘f / 𝐻)‘𝑥) = ((𝐺 ∘f / 𝐻)‘𝑥)) |
14 | | ffvelrn 6941 |
. . . . 5
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
15 | 2, 14 | sylan 579 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
16 | | ffvelrn 6941 |
. . . . . 6
⊢ ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ (ℂ ∖
{0})) |
17 | | eldifsn 4717 |
. . . . . 6
⊢ ((𝐺‘𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝐺‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ≠ 0)) |
18 | 16, 17 | sylib 217 |
. . . . 5
⊢ ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ≠ 0)) |
19 | 4, 18 | sylan 579 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ≠ 0)) |
20 | | ffvelrn 6941 |
. . . . . 6
⊢ ((𝐻:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) ∈ (ℂ ∖
{0})) |
21 | | eldifsn 4717 |
. . . . . 6
⊢ ((𝐻‘𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝐻‘𝑥) ∈ ℂ ∧ (𝐻‘𝑥) ≠ 0)) |
22 | 20, 21 | sylib 217 |
. . . . 5
⊢ ((𝐻:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥 ∈ 𝐴) → ((𝐻‘𝑥) ∈ ℂ ∧ (𝐻‘𝑥) ≠ 0)) |
23 | 6, 22 | sylan 579 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → ((𝐻‘𝑥) ∈ ℂ ∧ (𝐻‘𝑥) ≠ 0)) |
24 | | divdiv2 11617 |
. . . 4
⊢ (((𝐹‘𝑥) ∈ ℂ ∧ ((𝐺‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ≠ 0) ∧ ((𝐻‘𝑥) ∈ ℂ ∧ (𝐻‘𝑥) ≠ 0)) → ((𝐹‘𝑥) / ((𝐺‘𝑥) / (𝐻‘𝑥))) = (((𝐹‘𝑥) · (𝐻‘𝑥)) / (𝐺‘𝑥))) |
25 | 15, 19, 23, 24 | syl3anc 1369 |
. . 3
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) / ((𝐺‘𝑥) / (𝐻‘𝑥))) = (((𝐹‘𝑥) · (𝐻‘𝑥)) / (𝐺‘𝑥))) |
26 | | eqidd 2739 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐺‘𝑥)) |
27 | | eqidd 2739 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) = (𝐻‘𝑥)) |
28 | 5, 7, 1, 1, 8, 26,
27 | ofval 7522 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → ((𝐺 ∘f / 𝐻)‘𝑥) = ((𝐺‘𝑥) / (𝐻‘𝑥))) |
29 | 28 | oveq2d 7271 |
. . 3
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) / ((𝐺 ∘f / 𝐻)‘𝑥)) = ((𝐹‘𝑥) / ((𝐺‘𝑥) / (𝐻‘𝑥)))) |
30 | 3, 7, 1, 1, 8, 12,
27 | ofval 7522 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘f · 𝐻)‘𝑥) = ((𝐹‘𝑥) · (𝐻‘𝑥))) |
31 | 10, 5, 1, 1, 8, 30,
26 | ofval 7522 |
. . 3
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → (((𝐹 ∘f · 𝐻) ∘f / 𝐺)‘𝑥) = (((𝐹‘𝑥) · (𝐻‘𝑥)) / (𝐺‘𝑥))) |
32 | 25, 29, 31 | 3eqtr4d 2788 |
. 2
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) / ((𝐺 ∘f / 𝐻)‘𝑥)) = (((𝐹 ∘f · 𝐻) ∘f / 𝐺)‘𝑥)) |
33 | 1, 3, 9, 11, 12, 13, 32 | offveq 7535 |
1
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) →
(𝐹 ∘f /
(𝐺 ∘f /
𝐻)) = ((𝐹 ∘f · 𝐻) ∘f / 𝐺)) |