Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofdivdiv2 Structured version   Visualization version   GIF version

Theorem ofdivdiv2 41835
Description: Function analogue of divdiv2 11617. (Contributed by Steve Rodriguez, 23-Nov-2015.)
Assertion
Ref Expression
ofdivdiv2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → (𝐹f / (𝐺f / 𝐻)) = ((𝐹f · 𝐻) ∘f / 𝐺))

Proof of Theorem ofdivdiv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 763 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐴𝑉)
2 simplr 765 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐹:𝐴⟶ℂ)
32ffnd 6585 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐹 Fn 𝐴)
4 simprl 767 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐺:𝐴⟶(ℂ ∖ {0}))
54ffnd 6585 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐺 Fn 𝐴)
6 simprr 769 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐻:𝐴⟶(ℂ ∖ {0}))
76ffnd 6585 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐻 Fn 𝐴)
8 inidm 4149 . . 3 (𝐴𝐴) = 𝐴
95, 7, 1, 1, 8offn 7524 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → (𝐺f / 𝐻) Fn 𝐴)
103, 7, 1, 1, 8offn 7524 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → (𝐹f · 𝐻) Fn 𝐴)
1110, 5, 1, 1, 8offn 7524 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → ((𝐹f · 𝐻) ∘f / 𝐺) Fn 𝐴)
12 eqidd 2739 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
13 eqidd 2739 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐺f / 𝐻)‘𝑥) = ((𝐺f / 𝐻)‘𝑥))
14 ffvelrn 6941 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
152, 14sylan 579 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
16 ffvelrn 6941 . . . . . 6 ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ (ℂ ∖ {0}))
17 eldifsn 4717 . . . . . 6 ((𝐺𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
1816, 17sylib 217 . . . . 5 ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
194, 18sylan 579 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
20 ffvelrn 6941 . . . . . 6 ((𝐻:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ (ℂ ∖ {0}))
21 eldifsn 4717 . . . . . 6 ((𝐻𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝐻𝑥) ∈ ℂ ∧ (𝐻𝑥) ≠ 0))
2220, 21sylib 217 . . . . 5 ((𝐻:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → ((𝐻𝑥) ∈ ℂ ∧ (𝐻𝑥) ≠ 0))
236, 22sylan 579 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐻𝑥) ∈ ℂ ∧ (𝐻𝑥) ≠ 0))
24 divdiv2 11617 . . . 4 (((𝐹𝑥) ∈ ℂ ∧ ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0) ∧ ((𝐻𝑥) ∈ ℂ ∧ (𝐻𝑥) ≠ 0)) → ((𝐹𝑥) / ((𝐺𝑥) / (𝐻𝑥))) = (((𝐹𝑥) · (𝐻𝑥)) / (𝐺𝑥)))
2515, 19, 23, 24syl3anc 1369 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐹𝑥) / ((𝐺𝑥) / (𝐻𝑥))) = (((𝐹𝑥) · (𝐻𝑥)) / (𝐺𝑥)))
26 eqidd 2739 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
27 eqidd 2739 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → (𝐻𝑥) = (𝐻𝑥))
285, 7, 1, 1, 8, 26, 27ofval 7522 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐺f / 𝐻)‘𝑥) = ((𝐺𝑥) / (𝐻𝑥)))
2928oveq2d 7271 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐹𝑥) / ((𝐺f / 𝐻)‘𝑥)) = ((𝐹𝑥) / ((𝐺𝑥) / (𝐻𝑥))))
303, 7, 1, 1, 8, 12, 27ofval 7522 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐹f · 𝐻)‘𝑥) = ((𝐹𝑥) · (𝐻𝑥)))
3110, 5, 1, 1, 8, 30, 26ofval 7522 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → (((𝐹f · 𝐻) ∘f / 𝐺)‘𝑥) = (((𝐹𝑥) · (𝐻𝑥)) / (𝐺𝑥)))
3225, 29, 313eqtr4d 2788 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐹𝑥) / ((𝐺f / 𝐻)‘𝑥)) = (((𝐹f · 𝐻) ∘f / 𝐺)‘𝑥))
331, 3, 9, 11, 12, 13, 32offveq 7535 1 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → (𝐹f / (𝐺f / 𝐻)) = ((𝐹f · 𝐻) ∘f / 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  cdif 3880  {csn 4558  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  cc 10800  0cc0 10802   · cmul 10807   / cdiv 11562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator