Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofdivdiv2 Structured version   Visualization version   GIF version

Theorem ofdivdiv2 44317
Description: Function analogue of divdiv2 11894. (Contributed by Steve Rodriguez, 23-Nov-2015.)
Assertion
Ref Expression
ofdivdiv2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → (𝐹f / (𝐺f / 𝐻)) = ((𝐹f · 𝐻) ∘f / 𝐺))

Proof of Theorem ofdivdiv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐴𝑉)
2 simplr 768 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐹:𝐴⟶ℂ)
32ffnd 6689 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐹 Fn 𝐴)
4 simprl 770 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐺:𝐴⟶(ℂ ∖ {0}))
54ffnd 6689 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐺 Fn 𝐴)
6 simprr 772 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐻:𝐴⟶(ℂ ∖ {0}))
76ffnd 6689 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐻 Fn 𝐴)
8 inidm 4190 . . 3 (𝐴𝐴) = 𝐴
95, 7, 1, 1, 8offn 7666 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → (𝐺f / 𝐻) Fn 𝐴)
103, 7, 1, 1, 8offn 7666 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → (𝐹f · 𝐻) Fn 𝐴)
1110, 5, 1, 1, 8offn 7666 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → ((𝐹f · 𝐻) ∘f / 𝐺) Fn 𝐴)
12 eqidd 2730 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
13 eqidd 2730 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐺f / 𝐻)‘𝑥) = ((𝐺f / 𝐻)‘𝑥))
14 ffvelcdm 7053 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
152, 14sylan 580 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
16 ffvelcdm 7053 . . . . . 6 ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ (ℂ ∖ {0}))
17 eldifsn 4750 . . . . . 6 ((𝐺𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
1816, 17sylib 218 . . . . 5 ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
194, 18sylan 580 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
20 ffvelcdm 7053 . . . . . 6 ((𝐻:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ (ℂ ∖ {0}))
21 eldifsn 4750 . . . . . 6 ((𝐻𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝐻𝑥) ∈ ℂ ∧ (𝐻𝑥) ≠ 0))
2220, 21sylib 218 . . . . 5 ((𝐻:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → ((𝐻𝑥) ∈ ℂ ∧ (𝐻𝑥) ≠ 0))
236, 22sylan 580 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐻𝑥) ∈ ℂ ∧ (𝐻𝑥) ≠ 0))
24 divdiv2 11894 . . . 4 (((𝐹𝑥) ∈ ℂ ∧ ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0) ∧ ((𝐻𝑥) ∈ ℂ ∧ (𝐻𝑥) ≠ 0)) → ((𝐹𝑥) / ((𝐺𝑥) / (𝐻𝑥))) = (((𝐹𝑥) · (𝐻𝑥)) / (𝐺𝑥)))
2515, 19, 23, 24syl3anc 1373 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐹𝑥) / ((𝐺𝑥) / (𝐻𝑥))) = (((𝐹𝑥) · (𝐻𝑥)) / (𝐺𝑥)))
26 eqidd 2730 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
27 eqidd 2730 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → (𝐻𝑥) = (𝐻𝑥))
285, 7, 1, 1, 8, 26, 27ofval 7664 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐺f / 𝐻)‘𝑥) = ((𝐺𝑥) / (𝐻𝑥)))
2928oveq2d 7403 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐹𝑥) / ((𝐺f / 𝐻)‘𝑥)) = ((𝐹𝑥) / ((𝐺𝑥) / (𝐻𝑥))))
303, 7, 1, 1, 8, 12, 27ofval 7664 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐹f · 𝐻)‘𝑥) = ((𝐹𝑥) · (𝐻𝑥)))
3110, 5, 1, 1, 8, 30, 26ofval 7664 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → (((𝐹f · 𝐻) ∘f / 𝐺)‘𝑥) = (((𝐹𝑥) · (𝐻𝑥)) / (𝐺𝑥)))
3225, 29, 313eqtr4d 2774 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐹𝑥) / ((𝐺f / 𝐻)‘𝑥)) = (((𝐹f · 𝐻) ∘f / 𝐺)‘𝑥))
331, 3, 9, 11, 12, 13, 32offveq 7679 1 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → (𝐹f / (𝐺f / 𝐻)) = ((𝐹f · 𝐻) ∘f / 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3911  {csn 4589  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  cc 11066  0cc0 11068   · cmul 11073   / cdiv 11835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator