Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofdivdiv2 Structured version   Visualization version   GIF version

Theorem ofdivdiv2 41984
Description: Function analogue of divdiv2 11733. (Contributed by Steve Rodriguez, 23-Nov-2015.)
Assertion
Ref Expression
ofdivdiv2 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) β†’ (𝐹 ∘f / (𝐺 ∘f / 𝐻)) = ((𝐹 ∘f Β· 𝐻) ∘f / 𝐺))

Proof of Theorem ofdivdiv2
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 simpll 765 . 2 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) β†’ 𝐴 ∈ 𝑉)
2 simplr 767 . . 3 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) β†’ 𝐹:π΄βŸΆβ„‚)
32ffnd 6631 . 2 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) β†’ 𝐹 Fn 𝐴)
4 simprl 769 . . . 4 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) β†’ 𝐺:𝐴⟢(β„‚ βˆ– {0}))
54ffnd 6631 . . 3 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) β†’ 𝐺 Fn 𝐴)
6 simprr 771 . . . 4 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) β†’ 𝐻:𝐴⟢(β„‚ βˆ– {0}))
76ffnd 6631 . . 3 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) β†’ 𝐻 Fn 𝐴)
8 inidm 4158 . . 3 (𝐴 ∩ 𝐴) = 𝐴
95, 7, 1, 1, 8offn 7578 . 2 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) β†’ (𝐺 ∘f / 𝐻) Fn 𝐴)
103, 7, 1, 1, 8offn 7578 . . 3 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) β†’ (𝐹 ∘f Β· 𝐻) Fn 𝐴)
1110, 5, 1, 1, 8offn 7578 . 2 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) β†’ ((𝐹 ∘f Β· 𝐻) ∘f / 𝐺) Fn 𝐴)
12 eqidd 2737 . 2 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) ∧ π‘₯ ∈ 𝐴) β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π‘₯))
13 eqidd 2737 . 2 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) ∧ π‘₯ ∈ 𝐴) β†’ ((𝐺 ∘f / 𝐻)β€˜π‘₯) = ((𝐺 ∘f / 𝐻)β€˜π‘₯))
14 ffvelcdm 6991 . . . . 5 ((𝐹:π΄βŸΆβ„‚ ∧ π‘₯ ∈ 𝐴) β†’ (πΉβ€˜π‘₯) ∈ β„‚)
152, 14sylan 581 . . . 4 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) ∧ π‘₯ ∈ 𝐴) β†’ (πΉβ€˜π‘₯) ∈ β„‚)
16 ffvelcdm 6991 . . . . . 6 ((𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ π‘₯ ∈ 𝐴) β†’ (πΊβ€˜π‘₯) ∈ (β„‚ βˆ– {0}))
17 eldifsn 4726 . . . . . 6 ((πΊβ€˜π‘₯) ∈ (β„‚ βˆ– {0}) ↔ ((πΊβ€˜π‘₯) ∈ β„‚ ∧ (πΊβ€˜π‘₯) β‰  0))
1816, 17sylib 217 . . . . 5 ((𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ π‘₯ ∈ 𝐴) β†’ ((πΊβ€˜π‘₯) ∈ β„‚ ∧ (πΊβ€˜π‘₯) β‰  0))
194, 18sylan 581 . . . 4 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) ∧ π‘₯ ∈ 𝐴) β†’ ((πΊβ€˜π‘₯) ∈ β„‚ ∧ (πΊβ€˜π‘₯) β‰  0))
20 ffvelcdm 6991 . . . . . 6 ((𝐻:𝐴⟢(β„‚ βˆ– {0}) ∧ π‘₯ ∈ 𝐴) β†’ (π»β€˜π‘₯) ∈ (β„‚ βˆ– {0}))
21 eldifsn 4726 . . . . . 6 ((π»β€˜π‘₯) ∈ (β„‚ βˆ– {0}) ↔ ((π»β€˜π‘₯) ∈ β„‚ ∧ (π»β€˜π‘₯) β‰  0))
2220, 21sylib 217 . . . . 5 ((𝐻:𝐴⟢(β„‚ βˆ– {0}) ∧ π‘₯ ∈ 𝐴) β†’ ((π»β€˜π‘₯) ∈ β„‚ ∧ (π»β€˜π‘₯) β‰  0))
236, 22sylan 581 . . . 4 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) ∧ π‘₯ ∈ 𝐴) β†’ ((π»β€˜π‘₯) ∈ β„‚ ∧ (π»β€˜π‘₯) β‰  0))
24 divdiv2 11733 . . . 4 (((πΉβ€˜π‘₯) ∈ β„‚ ∧ ((πΊβ€˜π‘₯) ∈ β„‚ ∧ (πΊβ€˜π‘₯) β‰  0) ∧ ((π»β€˜π‘₯) ∈ β„‚ ∧ (π»β€˜π‘₯) β‰  0)) β†’ ((πΉβ€˜π‘₯) / ((πΊβ€˜π‘₯) / (π»β€˜π‘₯))) = (((πΉβ€˜π‘₯) Β· (π»β€˜π‘₯)) / (πΊβ€˜π‘₯)))
2515, 19, 23, 24syl3anc 1371 . . 3 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) ∧ π‘₯ ∈ 𝐴) β†’ ((πΉβ€˜π‘₯) / ((πΊβ€˜π‘₯) / (π»β€˜π‘₯))) = (((πΉβ€˜π‘₯) Β· (π»β€˜π‘₯)) / (πΊβ€˜π‘₯)))
26 eqidd 2737 . . . . 5 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) ∧ π‘₯ ∈ 𝐴) β†’ (πΊβ€˜π‘₯) = (πΊβ€˜π‘₯))
27 eqidd 2737 . . . . 5 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) ∧ π‘₯ ∈ 𝐴) β†’ (π»β€˜π‘₯) = (π»β€˜π‘₯))
285, 7, 1, 1, 8, 26, 27ofval 7576 . . . 4 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) ∧ π‘₯ ∈ 𝐴) β†’ ((𝐺 ∘f / 𝐻)β€˜π‘₯) = ((πΊβ€˜π‘₯) / (π»β€˜π‘₯)))
2928oveq2d 7323 . . 3 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) ∧ π‘₯ ∈ 𝐴) β†’ ((πΉβ€˜π‘₯) / ((𝐺 ∘f / 𝐻)β€˜π‘₯)) = ((πΉβ€˜π‘₯) / ((πΊβ€˜π‘₯) / (π»β€˜π‘₯))))
303, 7, 1, 1, 8, 12, 27ofval 7576 . . . 4 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) ∧ π‘₯ ∈ 𝐴) β†’ ((𝐹 ∘f Β· 𝐻)β€˜π‘₯) = ((πΉβ€˜π‘₯) Β· (π»β€˜π‘₯)))
3110, 5, 1, 1, 8, 30, 26ofval 7576 . . 3 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) ∧ π‘₯ ∈ 𝐴) β†’ (((𝐹 ∘f Β· 𝐻) ∘f / 𝐺)β€˜π‘₯) = (((πΉβ€˜π‘₯) Β· (π»β€˜π‘₯)) / (πΊβ€˜π‘₯)))
3225, 29, 313eqtr4d 2786 . 2 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) ∧ π‘₯ ∈ 𝐴) β†’ ((πΉβ€˜π‘₯) / ((𝐺 ∘f / 𝐻)β€˜π‘₯)) = (((𝐹 ∘f Β· 𝐻) ∘f / 𝐺)β€˜π‘₯))
331, 3, 9, 11, 12, 13, 32offveq 7589 1 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:𝐴⟢(β„‚ βˆ– {0}) ∧ 𝐻:𝐴⟢(β„‚ βˆ– {0}))) β†’ (𝐹 ∘f / (𝐺 ∘f / 𝐻)) = ((𝐹 ∘f Β· 𝐻) ∘f / 𝐺))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1539   ∈ wcel 2104   β‰  wne 2941   βˆ– cdif 3889  {csn 4565  βŸΆwf 6454  β€˜cfv 6458  (class class class)co 7307   ∘f cof 7563  β„‚cc 10915  0cc0 10917   Β· cmul 10922   / cdiv 11678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator