| Step | Hyp | Ref
| Expression |
| 1 | | simpll 766 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐴 ∈ 𝑉) |
| 2 | | simplr 768 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐹:𝐴⟶ℂ) |
| 3 | 2 | ffnd 6712 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐹 Fn 𝐴) |
| 4 | | simprl 770 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐺:𝐴⟶(ℂ ∖
{0})) |
| 5 | 4 | ffnd 6712 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐺 Fn 𝐴) |
| 6 | | simprr 772 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐻:𝐴⟶(ℂ ∖
{0})) |
| 7 | 6 | ffnd 6712 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐻 Fn 𝐴) |
| 8 | | inidm 4207 |
. . 3
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| 9 | 5, 7, 1, 1, 8 | offn 7689 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) →
(𝐺 ∘f /
𝐻) Fn 𝐴) |
| 10 | 3, 7, 1, 1, 8 | offn 7689 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) →
(𝐹 ∘f
· 𝐻) Fn 𝐴) |
| 11 | 10, 5, 1, 1, 8 | offn 7689 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) →
((𝐹 ∘f
· 𝐻)
∘f / 𝐺) Fn
𝐴) |
| 12 | | eqidd 2737 |
. 2
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
| 13 | | eqidd 2737 |
. 2
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → ((𝐺 ∘f / 𝐻)‘𝑥) = ((𝐺 ∘f / 𝐻)‘𝑥)) |
| 14 | | ffvelcdm 7076 |
. . . . 5
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
| 15 | 2, 14 | sylan 580 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
| 16 | | ffvelcdm 7076 |
. . . . . 6
⊢ ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ (ℂ ∖
{0})) |
| 17 | | eldifsn 4767 |
. . . . . 6
⊢ ((𝐺‘𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝐺‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ≠ 0)) |
| 18 | 16, 17 | sylib 218 |
. . . . 5
⊢ ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ≠ 0)) |
| 19 | 4, 18 | sylan 580 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ≠ 0)) |
| 20 | | ffvelcdm 7076 |
. . . . . 6
⊢ ((𝐻:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) ∈ (ℂ ∖
{0})) |
| 21 | | eldifsn 4767 |
. . . . . 6
⊢ ((𝐻‘𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝐻‘𝑥) ∈ ℂ ∧ (𝐻‘𝑥) ≠ 0)) |
| 22 | 20, 21 | sylib 218 |
. . . . 5
⊢ ((𝐻:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥 ∈ 𝐴) → ((𝐻‘𝑥) ∈ ℂ ∧ (𝐻‘𝑥) ≠ 0)) |
| 23 | 6, 22 | sylan 580 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → ((𝐻‘𝑥) ∈ ℂ ∧ (𝐻‘𝑥) ≠ 0)) |
| 24 | | divdiv2 11958 |
. . . 4
⊢ (((𝐹‘𝑥) ∈ ℂ ∧ ((𝐺‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ≠ 0) ∧ ((𝐻‘𝑥) ∈ ℂ ∧ (𝐻‘𝑥) ≠ 0)) → ((𝐹‘𝑥) / ((𝐺‘𝑥) / (𝐻‘𝑥))) = (((𝐹‘𝑥) · (𝐻‘𝑥)) / (𝐺‘𝑥))) |
| 25 | 15, 19, 23, 24 | syl3anc 1373 |
. . 3
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) / ((𝐺‘𝑥) / (𝐻‘𝑥))) = (((𝐹‘𝑥) · (𝐻‘𝑥)) / (𝐺‘𝑥))) |
| 26 | | eqidd 2737 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐺‘𝑥)) |
| 27 | | eqidd 2737 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) = (𝐻‘𝑥)) |
| 28 | 5, 7, 1, 1, 8, 26,
27 | ofval 7687 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → ((𝐺 ∘f / 𝐻)‘𝑥) = ((𝐺‘𝑥) / (𝐻‘𝑥))) |
| 29 | 28 | oveq2d 7426 |
. . 3
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) / ((𝐺 ∘f / 𝐻)‘𝑥)) = ((𝐹‘𝑥) / ((𝐺‘𝑥) / (𝐻‘𝑥)))) |
| 30 | 3, 7, 1, 1, 8, 12,
27 | ofval 7687 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘f · 𝐻)‘𝑥) = ((𝐹‘𝑥) · (𝐻‘𝑥))) |
| 31 | 10, 5, 1, 1, 8, 30,
26 | ofval 7687 |
. . 3
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → (((𝐹 ∘f · 𝐻) ∘f / 𝐺)‘𝑥) = (((𝐹‘𝑥) · (𝐻‘𝑥)) / (𝐺‘𝑥))) |
| 32 | 25, 29, 31 | 3eqtr4d 2781 |
. 2
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) / ((𝐺 ∘f / 𝐻)‘𝑥)) = (((𝐹 ∘f · 𝐻) ∘f / 𝐺)‘𝑥)) |
| 33 | 1, 3, 9, 11, 12, 13, 32 | offveq 7702 |
1
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) →
(𝐹 ∘f /
(𝐺 ∘f /
𝐻)) = ((𝐹 ∘f · 𝐻) ∘f / 𝐺)) |