MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofnegsub Structured version   Visualization version   GIF version

Theorem ofnegsub 12191
Description: Function analogue of negsub 11477. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
ofnegsub ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹f + ((𝐴 × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))

Proof of Theorem ofnegsub
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐴𝑉)
2 simp2 1137 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ)
32ffnd 6692 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹 Fn 𝐴)
4 ax-1cn 11133 . . . . 5 1 ∈ ℂ
54negcli 11497 . . . 4 -1 ∈ ℂ
6 fnconstg 6751 . . . 4 (-1 ∈ ℂ → (𝐴 × {-1}) Fn 𝐴)
75, 6mp1i 13 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐴 × {-1}) Fn 𝐴)
8 simp3 1138 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺:𝐴⟶ℂ)
98ffnd 6692 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺 Fn 𝐴)
10 inidm 4193 . . 3 (𝐴𝐴) = 𝐴
117, 9, 1, 1, 10offn 7669 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐴 × {-1}) ∘f · 𝐺) Fn 𝐴)
123, 9, 1, 1, 10offn 7669 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹f𝐺) Fn 𝐴)
13 eqidd 2731 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
145a1i 11 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → -1 ∈ ℂ)
15 eqidd 2731 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
161, 14, 9, 15ofc1 7684 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐴 × {-1}) ∘f · 𝐺)‘𝑥) = (-1 · (𝐺𝑥)))
178ffvelcdmda 7059 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℂ)
1817mulm1d 11637 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (-1 · (𝐺𝑥)) = -(𝐺𝑥))
1916, 18eqtrd 2765 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐴 × {-1}) ∘f · 𝐺)‘𝑥) = -(𝐺𝑥))
202ffvelcdmda 7059 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
2120, 17negsubd 11546 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → ((𝐹𝑥) + -(𝐺𝑥)) = ((𝐹𝑥) − (𝐺𝑥)))
223, 9, 1, 1, 10, 13, 15ofval 7667 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → ((𝐹f𝐺)‘𝑥) = ((𝐹𝑥) − (𝐺𝑥)))
2321, 22eqtr4d 2768 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → ((𝐹𝑥) + -(𝐺𝑥)) = ((𝐹f𝐺)‘𝑥))
241, 3, 11, 12, 13, 19, 23offveq 7682 1 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹f + ((𝐴 × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {csn 4592   × cxp 5639   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  cc 11073  1c1 11076   + caddc 11078   · cmul 11080  cmin 11412  -cneg 11413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220  df-sub 11414  df-neg 11415
This theorem is referenced by:  i1fsub  25616  itg1sub  25617  plysub  26131  coesub  26169  dgrsub  26185  basellem9  27006  expgrowth  44331
  Copyright terms: Public domain W3C validator