![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofnegsub | Structured version Visualization version GIF version |
Description: Function analogue of negsub 11549. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
ofnegsub | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹 ∘f + ((𝐴 × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐴 ∈ 𝑉) | |
2 | simp2 1134 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ) | |
3 | 2 | ffnd 6721 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹 Fn 𝐴) |
4 | ax-1cn 11207 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 4 | negcli 11569 | . . . 4 ⊢ -1 ∈ ℂ |
6 | fnconstg 6782 | . . . 4 ⊢ (-1 ∈ ℂ → (𝐴 × {-1}) Fn 𝐴) | |
7 | 5, 6 | mp1i 13 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐴 × {-1}) Fn 𝐴) |
8 | simp3 1135 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺:𝐴⟶ℂ) | |
9 | 8 | ffnd 6721 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺 Fn 𝐴) |
10 | inidm 4217 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
11 | 7, 9, 1, 1, 10 | offn 7695 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐴 × {-1}) ∘f · 𝐺) Fn 𝐴) |
12 | 3, 9, 1, 1, 10 | offn 7695 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹 ∘f − 𝐺) Fn 𝐴) |
13 | eqidd 2727 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
14 | 5 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → -1 ∈ ℂ) |
15 | eqidd 2727 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
16 | 1, 14, 9, 15 | ofc1 7709 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (((𝐴 × {-1}) ∘f · 𝐺)‘𝑥) = (-1 · (𝐺‘𝑥))) |
17 | 8 | ffvelcdmda 7090 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ ℂ) |
18 | 17 | mulm1d 11707 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (-1 · (𝐺‘𝑥)) = -(𝐺‘𝑥)) |
19 | 16, 18 | eqtrd 2766 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (((𝐴 × {-1}) ∘f · 𝐺)‘𝑥) = -(𝐺‘𝑥)) |
20 | 2 | ffvelcdmda 7090 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
21 | 20, 17 | negsubd 11618 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) + -(𝐺‘𝑥)) = ((𝐹‘𝑥) − (𝐺‘𝑥))) |
22 | 3, 9, 1, 1, 10, 13, 15 | ofval 7693 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘f − 𝐺)‘𝑥) = ((𝐹‘𝑥) − (𝐺‘𝑥))) |
23 | 21, 22 | eqtr4d 2769 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) + -(𝐺‘𝑥)) = ((𝐹 ∘f − 𝐺)‘𝑥)) |
24 | 1, 3, 11, 12, 13, 19, 23 | offveq 7707 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹 ∘f + ((𝐴 × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 {csn 4623 × cxp 5672 Fn wfn 6541 ⟶wf 6542 ‘cfv 6546 (class class class)co 7416 ∘f cof 7680 ℂcc 11147 1c1 11150 + caddc 11152 · cmul 11154 − cmin 11485 -cneg 11486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-po 5586 df-so 5587 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-ltxr 11294 df-sub 11487 df-neg 11488 |
This theorem is referenced by: i1fsub 25726 itg1sub 25727 plysub 26243 coesub 26281 dgrsub 26297 basellem9 27114 expgrowth 44046 |
Copyright terms: Public domain | W3C validator |