MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofnegsub Structured version   Visualization version   GIF version

Theorem ofnegsub 11793
Description: Function analogue of negsub 11091. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
ofnegsub ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹f + ((𝐴 × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))

Proof of Theorem ofnegsub
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1138 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐴𝑉)
2 simp2 1139 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ)
32ffnd 6524 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹 Fn 𝐴)
4 ax-1cn 10752 . . . . 5 1 ∈ ℂ
54negcli 11111 . . . 4 -1 ∈ ℂ
6 fnconstg 6585 . . . 4 (-1 ∈ ℂ → (𝐴 × {-1}) Fn 𝐴)
75, 6mp1i 13 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐴 × {-1}) Fn 𝐴)
8 simp3 1140 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺:𝐴⟶ℂ)
98ffnd 6524 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺 Fn 𝐴)
10 inidm 4119 . . 3 (𝐴𝐴) = 𝐴
117, 9, 1, 1, 10offn 7459 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐴 × {-1}) ∘f · 𝐺) Fn 𝐴)
123, 9, 1, 1, 10offn 7459 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹f𝐺) Fn 𝐴)
13 eqidd 2737 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
145a1i 11 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → -1 ∈ ℂ)
15 eqidd 2737 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
161, 14, 9, 15ofc1 7472 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐴 × {-1}) ∘f · 𝐺)‘𝑥) = (-1 · (𝐺𝑥)))
178ffvelrnda 6882 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℂ)
1817mulm1d 11249 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (-1 · (𝐺𝑥)) = -(𝐺𝑥))
1916, 18eqtrd 2771 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐴 × {-1}) ∘f · 𝐺)‘𝑥) = -(𝐺𝑥))
202ffvelrnda 6882 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
2120, 17negsubd 11160 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → ((𝐹𝑥) + -(𝐺𝑥)) = ((𝐹𝑥) − (𝐺𝑥)))
223, 9, 1, 1, 10, 13, 15ofval 7457 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → ((𝐹f𝐺)‘𝑥) = ((𝐹𝑥) − (𝐺𝑥)))
2321, 22eqtr4d 2774 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → ((𝐹𝑥) + -(𝐺𝑥)) = ((𝐹f𝐺)‘𝑥))
241, 3, 11, 12, 13, 19, 23offveq 7470 1 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹f + ((𝐴 × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  {csn 4527   × cxp 5534   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7191  f cof 7445  cc 10692  1c1 10695   + caddc 10697   · cmul 10699  cmin 11027  -cneg 11028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-po 5453  df-so 5454  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-ltxr 10837  df-sub 11029  df-neg 11030
This theorem is referenced by:  i1fsub  24560  itg1sub  24561  plysub  25067  coesub  25105  dgrsub  25120  basellem9  25925  expgrowth  41567
  Copyright terms: Public domain W3C validator