Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofdivcan4 Structured version   Visualization version   GIF version

Theorem ofdivcan4 39308
Description: Function analogue of divcan4 11004. (Contributed by Steve Rodriguez, 4-Nov-2015.)
Assertion
Ref Expression
ofdivcan4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → ((𝐹𝑓 · 𝐺) ∘𝑓 / 𝐺) = 𝐹)

Proof of Theorem ofdivcan4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1167 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐴𝑉)
2 simp2 1168 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐹:𝐴⟶ℂ)
32ffnd 6257 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐹 Fn 𝐴)
4 simp3 1169 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐺:𝐴⟶(ℂ ∖ {0}))
54ffnd 6257 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐺 Fn 𝐴)
6 inidm 4018 . . 3 (𝐴𝐴) = 𝐴
73, 5, 1, 1, 6offn 7142 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → (𝐹𝑓 · 𝐺) Fn 𝐴)
8 eqidd 2800 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
9 eqidd 2800 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
103, 5, 1, 1, 6, 8, 9ofval 7140 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → ((𝐹𝑓 · 𝐺)‘𝑥) = ((𝐹𝑥) · (𝐺𝑥)))
11 ffvelrn 6583 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
122, 11sylan 576 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
13 ffvelrn 6583 . . . . 5 ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ (ℂ ∖ {0}))
14 eldifsn 4506 . . . . 5 ((𝐺𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
1513, 14sylib 210 . . . 4 ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
164, 15sylan 576 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
17 divcan4 11004 . . . 4 (((𝐹𝑥) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0) → (((𝐹𝑥) · (𝐺𝑥)) / (𝐺𝑥)) = (𝐹𝑥))
18173expb 1150 . . 3 (((𝐹𝑥) ∈ ℂ ∧ ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0)) → (((𝐹𝑥) · (𝐺𝑥)) / (𝐺𝑥)) = (𝐹𝑥))
1912, 16, 18syl2anc 580 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → (((𝐹𝑥) · (𝐺𝑥)) / (𝐺𝑥)) = (𝐹𝑥))
201, 7, 5, 3, 10, 9, 19offveq 7152 1 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → ((𝐹𝑓 · 𝐺) ∘𝑓 / 𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2971  cdif 3766  {csn 4368  wf 6097  cfv 6101  (class class class)co 6878  𝑓 cof 7129  cc 10222  0cc0 10224   · cmul 10229   / cdiv 10976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-po 5233  df-so 5234  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977
This theorem is referenced by:  expgrowth  39316  binomcxplemnotnn0  39337
  Copyright terms: Public domain W3C validator