Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofdivcan4 | Structured version Visualization version GIF version |
Description: Function analogue of divcan4 11643. (Contributed by Steve Rodriguez, 4-Nov-2015.) |
Ref | Expression |
---|---|
ofdivcan4 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → ((𝐹 ∘f · 𝐺) ∘f / 𝐺) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐴 ∈ 𝑉) | |
2 | simp2 1135 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐹:𝐴⟶ℂ) | |
3 | 2 | ffnd 6597 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐹 Fn 𝐴) |
4 | simp3 1136 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐺:𝐴⟶(ℂ ∖ {0})) | |
5 | 4 | ffnd 6597 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐺 Fn 𝐴) |
6 | inidm 4157 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
7 | 3, 5, 1, 1, 6 | offn 7537 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → (𝐹 ∘f · 𝐺) Fn 𝐴) |
8 | eqidd 2740 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
9 | eqidd 2740 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
10 | 3, 5, 1, 1, 6, 8, 9 | ofval 7535 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘f · 𝐺)‘𝑥) = ((𝐹‘𝑥) · (𝐺‘𝑥))) |
11 | ffvelrn 6953 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) | |
12 | 2, 11 | sylan 579 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
13 | ffvelrn 6953 | . . . . 5 ⊢ ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ (ℂ ∖ {0})) | |
14 | eldifsn 4725 | . . . . 5 ⊢ ((𝐺‘𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝐺‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ≠ 0)) | |
15 | 13, 14 | sylib 217 | . . . 4 ⊢ ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ≠ 0)) |
16 | 4, 15 | sylan 579 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ≠ 0)) |
17 | divcan4 11643 | . . . 4 ⊢ (((𝐹‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ≠ 0) → (((𝐹‘𝑥) · (𝐺‘𝑥)) / (𝐺‘𝑥)) = (𝐹‘𝑥)) | |
18 | 17 | 3expb 1118 | . . 3 ⊢ (((𝐹‘𝑥) ∈ ℂ ∧ ((𝐺‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ≠ 0)) → (((𝐹‘𝑥) · (𝐺‘𝑥)) / (𝐺‘𝑥)) = (𝐹‘𝑥)) |
19 | 12, 16, 18 | syl2anc 583 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥 ∈ 𝐴) → (((𝐹‘𝑥) · (𝐺‘𝑥)) / (𝐺‘𝑥)) = (𝐹‘𝑥)) |
20 | 1, 7, 5, 3, 10, 9, 19 | offveq 7548 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → ((𝐹 ∘f · 𝐺) ∘f / 𝐺) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∖ cdif 3888 {csn 4566 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 ∘f cof 7522 ℂcc 10853 0cc0 10855 · cmul 10860 / cdiv 11615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 |
This theorem is referenced by: expgrowth 41906 binomcxplemnotnn0 41927 |
Copyright terms: Public domain | W3C validator |