Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  old0 Structured version   Visualization version   GIF version

Theorem old0 33806
Description: No surreal is older than . (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
old0 ( O ‘∅) = ∅

Proof of Theorem old0
StepHypRef Expression
1 0elon 6284 . . 3 ∅ ∈ On
2 oldval 33801 . . 3 (∅ ∈ On → ( O ‘∅) = ( M “ ∅))
31, 2ax-mp 5 . 2 ( O ‘∅) = ( M “ ∅)
4 ima0 5960 . . 3 ( M “ ∅) = ∅
54unieqi 4847 . 2 ( M “ ∅) =
6 uni0 4864 . 2 ∅ = ∅
73, 5, 63eqtri 2770 1 ( O ‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wcel 2111  c0 4252   cuni 4834  cima 5569  Oncon0 6231  cfv 6398   M cmade 33789   O cold 33790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pr 5337  ax-un 7542
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-wrecs 8068  df-recs 8129  df-made 33794  df-old 33795
This theorem is referenced by:  leftval  33810  rightval  33811  new0  33821  left0s  33838  right0s  33839  lrold  33840
  Copyright terms: Public domain W3C validator