| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > old0 | Structured version Visualization version GIF version | ||
| Description: No surreal is older than ∅. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| old0 | ⊢ ( O ‘∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6369 | . . 3 ⊢ ∅ ∈ On | |
| 2 | oldval 27805 | . . 3 ⊢ (∅ ∈ On → ( O ‘∅) = ∪ ( M “ ∅)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( O ‘∅) = ∪ ( M “ ∅) |
| 4 | ima0 6033 | . . 3 ⊢ ( M “ ∅) = ∅ | |
| 5 | 4 | unieqi 4872 | . 2 ⊢ ∪ ( M “ ∅) = ∪ ∅ |
| 6 | uni0 4888 | . 2 ⊢ ∪ ∅ = ∅ | |
| 7 | 3, 5, 6 | 3eqtri 2760 | 1 ⊢ ( O ‘∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∅c0 4284 ∪ cuni 4860 “ cima 5624 Oncon0 6314 ‘cfv 6489 M cmade 27793 O cold 27794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-made 27798 df-old 27799 |
| This theorem is referenced by: leftval 27814 rightval 27815 new0 27829 left0s 27848 right0s 27849 lrold 27852 |
| Copyright terms: Public domain | W3C validator |