MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  old0 Structured version   Visualization version   GIF version

Theorem old0 27787
Description: No surreal is older than . (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
old0 ( O ‘∅) = ∅

Proof of Theorem old0
StepHypRef Expression
1 0elon 6366 . . 3 ∅ ∈ On
2 oldval 27782 . . 3 (∅ ∈ On → ( O ‘∅) = ( M “ ∅))
31, 2ax-mp 5 . 2 ( O ‘∅) = ( M “ ∅)
4 ima0 6032 . . 3 ( M “ ∅) = ∅
54unieqi 4873 . 2 ( M “ ∅) =
6 uni0 4889 . 2 ∅ = ∅
73, 5, 63eqtri 2756 1 ( O ‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  c0 4286   cuni 4861  cima 5626  Oncon0 6311  cfv 6486   M cmade 27770   O cold 27771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-made 27775  df-old 27776
This theorem is referenced by:  leftval  27791  rightval  27792  new0  27806  left0s  27825  right0s  27826  lrold  27829
  Copyright terms: Public domain W3C validator