MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  newf Structured version   Visualization version   GIF version

Theorem newf 27831
Description: The new function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.)
Assertion
Ref Expression
newf N :On⟶𝒫 No

Proof of Theorem newf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-new 27822 . 2 N = (𝑥 ∈ On ↦ (( M ‘𝑥) ∖ ( O ‘𝑥)))
2 madef 27829 . . . . . 6 M :On⟶𝒫 No
32ffvelcdmi 7092 . . . . 5 (𝑥 ∈ On → ( M ‘𝑥) ∈ 𝒫 No )
43elpwid 4613 . . . 4 (𝑥 ∈ On → ( M ‘𝑥) ⊆ No )
54ssdifssd 4139 . . 3 (𝑥 ∈ On → (( M ‘𝑥) ∖ ( O ‘𝑥)) ⊆ No )
6 fvex 6909 . . . . 5 ( M ‘𝑥) ∈ V
76difexi 5331 . . . 4 (( M ‘𝑥) ∖ ( O ‘𝑥)) ∈ V
87elpw 4608 . . 3 ((( M ‘𝑥) ∖ ( O ‘𝑥)) ∈ 𝒫 No ↔ (( M ‘𝑥) ∖ ( O ‘𝑥)) ⊆ No )
95, 8sylibr 233 . 2 (𝑥 ∈ On → (( M ‘𝑥) ∖ ( O ‘𝑥)) ∈ 𝒫 No )
101, 9fmpti 7121 1 N :On⟶𝒫 No
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  cdif 3941  wss 3944  𝒫 cpw 4604  Oncon0 6371  wf 6545  cfv 6549   No csur 27618   M cmade 27815   O cold 27816   N cnew 27817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-1o 8487  df-2o 8488  df-no 27621  df-slt 27622  df-bday 27623  df-sslt 27760  df-scut 27762  df-made 27820  df-new 27822
This theorem is referenced by:  newssno  27835
  Copyright terms: Public domain W3C validator