Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  newf Structured version   Visualization version   GIF version

Theorem newf 34042
Description: The new function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.)
Assertion
Ref Expression
newf N :On⟶𝒫 No

Proof of Theorem newf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-new 34033 . 2 N = (𝑥 ∈ On ↦ (( M ‘𝑥) ∖ ( O ‘𝑥)))
2 madef 34040 . . . . . 6 M :On⟶𝒫 No
32ffvelrni 6960 . . . . 5 (𝑥 ∈ On → ( M ‘𝑥) ∈ 𝒫 No )
43elpwid 4544 . . . 4 (𝑥 ∈ On → ( M ‘𝑥) ⊆ No )
54ssdifssd 4077 . . 3 (𝑥 ∈ On → (( M ‘𝑥) ∖ ( O ‘𝑥)) ⊆ No )
6 fvex 6787 . . . . 5 ( M ‘𝑥) ∈ V
76difexi 5252 . . . 4 (( M ‘𝑥) ∖ ( O ‘𝑥)) ∈ V
87elpw 4537 . . 3 ((( M ‘𝑥) ∖ ( O ‘𝑥)) ∈ 𝒫 No ↔ (( M ‘𝑥) ∖ ( O ‘𝑥)) ⊆ No )
95, 8sylibr 233 . 2 (𝑥 ∈ On → (( M ‘𝑥) ∖ ( O ‘𝑥)) ∈ 𝒫 No )
101, 9fmpti 6986 1 N :On⟶𝒫 No
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  cdif 3884  wss 3887  𝒫 cpw 4533  Oncon0 6266  wf 6429  cfv 6433   No csur 33843   M cmade 34026   O cold 34027   N cnew 34028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-1o 8297  df-2o 8298  df-no 33846  df-slt 33847  df-bday 33848  df-sslt 33976  df-scut 33978  df-made 34031  df-new 34033
This theorem is referenced by:  newssno  34046
  Copyright terms: Public domain W3C validator