![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > newf | Structured version Visualization version GIF version |
Description: The new function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
Ref | Expression |
---|---|
newf | β’ N :OnβΆπ« No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-new 27769 | . 2 β’ N = (π₯ β On β¦ (( M βπ₯) β ( O βπ₯))) | |
2 | madef 27776 | . . . . . 6 β’ M :OnβΆπ« No | |
3 | 2 | ffvelcdmi 7087 | . . . . 5 β’ (π₯ β On β ( M βπ₯) β π« No ) |
4 | 3 | elpwid 4607 | . . . 4 β’ (π₯ β On β ( M βπ₯) β No ) |
5 | 4 | ssdifssd 4138 | . . 3 β’ (π₯ β On β (( M βπ₯) β ( O βπ₯)) β No ) |
6 | fvex 6904 | . . . . 5 β’ ( M βπ₯) β V | |
7 | 6 | difexi 5324 | . . . 4 β’ (( M βπ₯) β ( O βπ₯)) β V |
8 | 7 | elpw 4602 | . . 3 β’ ((( M βπ₯) β ( O βπ₯)) β π« No β (( M βπ₯) β ( O βπ₯)) β No ) |
9 | 5, 8 | sylibr 233 | . 2 β’ (π₯ β On β (( M βπ₯) β ( O βπ₯)) β π« No ) |
10 | 1, 9 | fmpti 7116 | 1 β’ N :OnβΆπ« No |
Colors of variables: wff setvar class |
Syntax hints: β wcel 2099 β cdif 3942 β wss 3945 π« cpw 4598 Oncon0 6363 βΆwf 6538 βcfv 6542 No csur 27566 M cmade 27762 O cold 27763 N cnew 27764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-1o 8480 df-2o 8481 df-no 27569 df-slt 27570 df-bday 27571 df-sslt 27707 df-scut 27709 df-made 27767 df-new 27769 |
This theorem is referenced by: newssno 27782 |
Copyright terms: Public domain | W3C validator |