![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omge2 | Structured version Visualization version GIF version |
Description: Any non-zero ordinal product is greater-than-or-equal to the term on the right. Lemma 3.12 of [Schloeder] p. 9. See omword2 8604. (Contributed by RP, 29-Jan-2025.) |
Ref | Expression |
---|---|
omge2 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝐵 ⊆ (𝐴 ·o 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 459 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ↔ (𝐵 ∈ On ∧ 𝐴 ∈ On)) | |
2 | 1 | anbi1i 622 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ≠ ∅) ↔ ((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐴 ≠ ∅)) |
3 | df-3an 1086 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ↔ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ≠ ∅)) | |
4 | on0eln0 6432 | . . . . 5 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
5 | 4 | adantl 480 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
6 | 5 | pm5.32i 573 | . . 3 ⊢ (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) ↔ ((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐴 ≠ ∅)) |
7 | 2, 3, 6 | 3bitr4i 302 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ↔ ((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴)) |
8 | omword2 8604 | . 2 ⊢ (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → 𝐵 ⊆ (𝐴 ·o 𝐵)) | |
9 | 7, 8 | sylbi 216 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝐵 ⊆ (𝐴 ·o 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 ∈ wcel 2099 ≠ wne 2930 ⊆ wss 3947 ∅c0 4325 Oncon0 6376 (class class class)co 7424 ·o comu 8494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-oadd 8500 df-omul 8501 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |