MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lemb Structured version   Visualization version   GIF version

Theorem eupth2lemb 27658
Description: Lemma for eupth2 27660 (induction basis): There are no vertices of odd degree in an Eulerian path of length 0, having no edge and identical endpoints (the single vertex of the Eulerian path). Formerly part of proof for eupth2 27660. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
Hypotheses
Ref Expression
eupth2.v 𝑉 = (Vtx‘𝐺)
eupth2.i 𝐼 = (iEdg‘𝐺)
eupth2.g (𝜑𝐺 ∈ UPGraph)
eupth2.f (𝜑 → Fun 𝐼)
eupth2.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
Assertion
Ref Expression
eupth2lemb (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)} = ∅)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem eupth2lemb
StepHypRef Expression
1 2z 11766 . . . . . 6 2 ∈ ℤ
2 dvds0 15414 . . . . . 6 (2 ∈ ℤ → 2 ∥ 0)
31, 2ax-mp 5 . . . . 5 2 ∥ 0
4 eupth2.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
54fvexi 6462 . . . . . . . . . . 11 𝑉 ∈ V
6 eupth2.i . . . . . . . . . . . . 13 𝐼 = (iEdg‘𝐺)
76fvexi 6462 . . . . . . . . . . . 12 𝐼 ∈ V
87resex 5695 . . . . . . . . . . 11 (𝐼 ↾ (𝐹 “ (0..^0))) ∈ V
95, 8pm3.2i 464 . . . . . . . . . 10 (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^0))) ∈ V)
10 opvtxfv 26369 . . . . . . . . . 10 ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^0))) ∈ V) → (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = 𝑉)
119, 10mp1i 13 . . . . . . . . 9 (𝜑 → (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = 𝑉)
1211eqcomd 2784 . . . . . . . 8 (𝜑𝑉 = (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩))
1312eleq2d 2845 . . . . . . 7 (𝜑 → (𝑥𝑉𝑥 ∈ (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)))
1413biimpa 470 . . . . . 6 ((𝜑𝑥𝑉) → 𝑥 ∈ (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩))
15 opiedgfv 26372 . . . . . . . . 9 ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^0))) ∈ V) → (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = (𝐼 ↾ (𝐹 “ (0..^0))))
169, 15mp1i 13 . . . . . . . 8 (𝜑 → (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = (𝐼 ↾ (𝐹 “ (0..^0))))
17 fzo0 12816 . . . . . . . . . . . 12 (0..^0) = ∅
1817imaeq2i 5720 . . . . . . . . . . 11 (𝐹 “ (0..^0)) = (𝐹 “ ∅)
19 ima0 5737 . . . . . . . . . . 11 (𝐹 “ ∅) = ∅
2018, 19eqtri 2802 . . . . . . . . . 10 (𝐹 “ (0..^0)) = ∅
2120reseq2i 5641 . . . . . . . . 9 (𝐼 ↾ (𝐹 “ (0..^0))) = (𝐼 ↾ ∅)
22 res0 5648 . . . . . . . . 9 (𝐼 ↾ ∅) = ∅
2321, 22eqtri 2802 . . . . . . . 8 (𝐼 ↾ (𝐹 “ (0..^0))) = ∅
2416, 23syl6eq 2830 . . . . . . 7 (𝜑 → (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = ∅)
2524adantr 474 . . . . . 6 ((𝜑𝑥𝑉) → (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = ∅)
26 eqid 2778 . . . . . . 7 (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)
27 eqid 2778 . . . . . . 7 (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)
2826, 27vtxdg0e 26839 . . . . . 6 ((𝑥 ∈ (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) ∧ (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = ∅) → ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥) = 0)
2914, 25, 28syl2anc 579 . . . . 5 ((𝜑𝑥𝑉) → ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥) = 0)
303, 29syl5breqr 4926 . . . 4 ((𝜑𝑥𝑉) → 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥))
3130notnotd 141 . . 3 ((𝜑𝑥𝑉) → ¬ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥))
3231ralrimiva 3148 . 2 (𝜑 → ∀𝑥𝑉 ¬ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥))
33 rabeq0 4187 . 2 ({𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)} = ∅ ↔ ∀𝑥𝑉 ¬ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥))
3432, 33sylibr 226 1 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1601  wcel 2107  wral 3090  {crab 3094  Vcvv 3398  c0 4141  cop 4404   class class class wbr 4888  cres 5359  cima 5360  Fun wfun 6131  cfv 6137  (class class class)co 6924  0cc0 10274  2c2 11435  cz 11733  ..^cfzo 12789  cdvds 15396  Vtxcvtx 26361  iEdgciedg 26362  UPGraphcupgr 26445  VtxDegcvtxdg 26830  EulerPathsceupth 27617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-card 9100  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-2 11443  df-n0 11648  df-z 11734  df-uz 11998  df-xadd 12263  df-fz 12649  df-fzo 12790  df-hash 13442  df-dvds 15397  df-vtx 26363  df-iedg 26364  df-vtxdg 26831
This theorem is referenced by:  eupth2  27660
  Copyright terms: Public domain W3C validator