| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eupth2lemb | Structured version Visualization version GIF version | ||
| Description: Lemma for eupth2 30240 (induction basis): There are no vertices of odd degree in an Eulerian path of length 0, having no edge and identical endpoints (the single vertex of the Eulerian path). Formerly part of proof for eupth2 30240. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
| Ref | Expression |
|---|---|
| eupth2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| eupth2.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| eupth2.g | ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
| eupth2.f | ⊢ (𝜑 → Fun 𝐼) |
| eupth2.p | ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
| Ref | Expression |
|---|---|
| eupth2lemb | ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉)‘𝑥)} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | z0even 16285 | . . . . 5 ⊢ 2 ∥ 0 | |
| 2 | eupth2.v | . . . . . . . . . . . 12 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 2 | fvexi 6845 | . . . . . . . . . . 11 ⊢ 𝑉 ∈ V |
| 4 | eupth2.i | . . . . . . . . . . . . 13 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 5 | 4 | fvexi 6845 | . . . . . . . . . . . 12 ⊢ 𝐼 ∈ V |
| 6 | 5 | resex 5985 | . . . . . . . . . . 11 ⊢ (𝐼 ↾ (𝐹 “ (0..^0))) ∈ V |
| 7 | 3, 6 | pm3.2i 470 | . . . . . . . . . 10 ⊢ (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^0))) ∈ V) |
| 8 | opvtxfv 29003 | . . . . . . . . . 10 ⊢ ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^0))) ∈ V) → (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉) = 𝑉) | |
| 9 | 7, 8 | mp1i 13 | . . . . . . . . 9 ⊢ (𝜑 → (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉) = 𝑉) |
| 10 | 9 | eqcomd 2739 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 = (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉)) |
| 11 | 10 | eleq2d 2819 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↔ 𝑥 ∈ (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉))) |
| 12 | 11 | biimpa 476 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉)) |
| 13 | opiedgfv 29006 | . . . . . . . . 9 ⊢ ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^0))) ∈ V) → (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉) = (𝐼 ↾ (𝐹 “ (0..^0)))) | |
| 14 | 7, 13 | mp1i 13 | . . . . . . . 8 ⊢ (𝜑 → (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉) = (𝐼 ↾ (𝐹 “ (0..^0)))) |
| 15 | fzo0 13590 | . . . . . . . . . . . 12 ⊢ (0..^0) = ∅ | |
| 16 | 15 | imaeq2i 6014 | . . . . . . . . . . 11 ⊢ (𝐹 “ (0..^0)) = (𝐹 “ ∅) |
| 17 | ima0 6033 | . . . . . . . . . . 11 ⊢ (𝐹 “ ∅) = ∅ | |
| 18 | 16, 17 | eqtri 2756 | . . . . . . . . . 10 ⊢ (𝐹 “ (0..^0)) = ∅ |
| 19 | 18 | reseq2i 5932 | . . . . . . . . 9 ⊢ (𝐼 ↾ (𝐹 “ (0..^0))) = (𝐼 ↾ ∅) |
| 20 | res0 5939 | . . . . . . . . 9 ⊢ (𝐼 ↾ ∅) = ∅ | |
| 21 | 19, 20 | eqtri 2756 | . . . . . . . 8 ⊢ (𝐼 ↾ (𝐹 “ (0..^0))) = ∅ |
| 22 | 14, 21 | eqtrdi 2784 | . . . . . . 7 ⊢ (𝜑 → (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉) = ∅) |
| 23 | 22 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉) = ∅) |
| 24 | eqid 2733 | . . . . . . 7 ⊢ (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉) = (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉) | |
| 25 | eqid 2733 | . . . . . . 7 ⊢ (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉) = (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉) | |
| 26 | 24, 25 | vtxdg0e 29474 | . . . . . 6 ⊢ ((𝑥 ∈ (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉) ∧ (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉) = ∅) → ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉)‘𝑥) = 0) |
| 27 | 12, 23, 26 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉)‘𝑥) = 0) |
| 28 | 1, 27 | breqtrrid 5133 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 2 ∥ ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉)‘𝑥)) |
| 29 | 28 | notnotd 144 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ¬ ¬ 2 ∥ ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉)‘𝑥)) |
| 30 | 29 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 ¬ ¬ 2 ∥ ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉)‘𝑥)) |
| 31 | rabeq0 4337 | . 2 ⊢ ({𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉)‘𝑥)} = ∅ ↔ ∀𝑥 ∈ 𝑉 ¬ ¬ 2 ∥ ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉)‘𝑥)) | |
| 32 | 30, 31 | sylibr 234 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉)‘𝑥)} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 Vcvv 3437 ∅c0 4282 〈cop 4583 class class class wbr 5095 ↾ cres 5623 “ cima 5624 Fun wfun 6483 ‘cfv 6489 (class class class)co 7355 0cc0 11017 2c2 12191 ..^cfzo 13561 ∥ cdvds 16170 Vtxcvtx 28995 iEdgciedg 28996 UPGraphcupgr 29079 VtxDegcvtxdg 29465 EulerPathsceupth 30198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-n0 12393 df-z 12480 df-uz 12743 df-xadd 13018 df-fz 13415 df-fzo 13562 df-hash 14245 df-dvds 16171 df-vtx 28997 df-iedg 28998 df-vtxdg 29466 |
| This theorem is referenced by: eupth2 30240 |
| Copyright terms: Public domain | W3C validator |