MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lemb Structured version   Visualization version   GIF version

Theorem eupth2lemb 30166
Description: Lemma for eupth2 30168 (induction basis): There are no vertices of odd degree in an Eulerian path of length 0, having no edge and identical endpoints (the single vertex of the Eulerian path). Formerly part of proof for eupth2 30168. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
Hypotheses
Ref Expression
eupth2.v 𝑉 = (Vtx‘𝐺)
eupth2.i 𝐼 = (iEdg‘𝐺)
eupth2.g (𝜑𝐺 ∈ UPGraph)
eupth2.f (𝜑 → Fun 𝐼)
eupth2.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
Assertion
Ref Expression
eupth2lemb (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)} = ∅)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem eupth2lemb
StepHypRef Expression
1 z0even 16337 . . . . 5 2 ∥ 0
2 eupth2.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
32fvexi 6872 . . . . . . . . . . 11 𝑉 ∈ V
4 eupth2.i . . . . . . . . . . . . 13 𝐼 = (iEdg‘𝐺)
54fvexi 6872 . . . . . . . . . . . 12 𝐼 ∈ V
65resex 6000 . . . . . . . . . . 11 (𝐼 ↾ (𝐹 “ (0..^0))) ∈ V
73, 6pm3.2i 470 . . . . . . . . . 10 (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^0))) ∈ V)
8 opvtxfv 28931 . . . . . . . . . 10 ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^0))) ∈ V) → (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = 𝑉)
97, 8mp1i 13 . . . . . . . . 9 (𝜑 → (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = 𝑉)
109eqcomd 2735 . . . . . . . 8 (𝜑𝑉 = (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩))
1110eleq2d 2814 . . . . . . 7 (𝜑 → (𝑥𝑉𝑥 ∈ (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)))
1211biimpa 476 . . . . . 6 ((𝜑𝑥𝑉) → 𝑥 ∈ (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩))
13 opiedgfv 28934 . . . . . . . . 9 ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^0))) ∈ V) → (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = (𝐼 ↾ (𝐹 “ (0..^0))))
147, 13mp1i 13 . . . . . . . 8 (𝜑 → (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = (𝐼 ↾ (𝐹 “ (0..^0))))
15 fzo0 13644 . . . . . . . . . . . 12 (0..^0) = ∅
1615imaeq2i 6029 . . . . . . . . . . 11 (𝐹 “ (0..^0)) = (𝐹 “ ∅)
17 ima0 6048 . . . . . . . . . . 11 (𝐹 “ ∅) = ∅
1816, 17eqtri 2752 . . . . . . . . . 10 (𝐹 “ (0..^0)) = ∅
1918reseq2i 5947 . . . . . . . . 9 (𝐼 ↾ (𝐹 “ (0..^0))) = (𝐼 ↾ ∅)
20 res0 5954 . . . . . . . . 9 (𝐼 ↾ ∅) = ∅
2119, 20eqtri 2752 . . . . . . . 8 (𝐼 ↾ (𝐹 “ (0..^0))) = ∅
2214, 21eqtrdi 2780 . . . . . . 7 (𝜑 → (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = ∅)
2322adantr 480 . . . . . 6 ((𝜑𝑥𝑉) → (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = ∅)
24 eqid 2729 . . . . . . 7 (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)
25 eqid 2729 . . . . . . 7 (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)
2624, 25vtxdg0e 29402 . . . . . 6 ((𝑥 ∈ (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) ∧ (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = ∅) → ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥) = 0)
2712, 23, 26syl2anc 584 . . . . 5 ((𝜑𝑥𝑉) → ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥) = 0)
281, 27breqtrrid 5145 . . . 4 ((𝜑𝑥𝑉) → 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥))
2928notnotd 144 . . 3 ((𝜑𝑥𝑉) → ¬ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥))
3029ralrimiva 3125 . 2 (𝜑 → ∀𝑥𝑉 ¬ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥))
31 rabeq0 4351 . 2 ({𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)} = ∅ ↔ ∀𝑥𝑉 ¬ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥))
3230, 31sylibr 234 1 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  c0 4296  cop 4595   class class class wbr 5107  cres 5640  cima 5641  Fun wfun 6505  cfv 6511  (class class class)co 7387  0cc0 11068  2c2 12241  ..^cfzo 13615  cdvds 16222  Vtxcvtx 28923  iEdgciedg 28924  UPGraphcupgr 29007  VtxDegcvtxdg 29393  EulerPathsceupth 30126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-xadd 13073  df-fz 13469  df-fzo 13616  df-hash 14296  df-dvds 16223  df-vtx 28925  df-iedg 28926  df-vtxdg 29394
This theorem is referenced by:  eupth2  30168
  Copyright terms: Public domain W3C validator