MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lemb Structured version   Visualization version   GIF version

Theorem eupth2lemb 27603
Description: Lemma for eupth2 27605 (induction basis): There are no vertices of odd degree in an Eulerian path of length 0, having no edge and identical endpoints (the single vertex of the Eulerian path). Formerly part of proof for eupth2 27605. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
Hypotheses
Ref Expression
eupth2.v 𝑉 = (Vtx‘𝐺)
eupth2.i 𝐼 = (iEdg‘𝐺)
eupth2.g (𝜑𝐺 ∈ UPGraph)
eupth2.f (𝜑 → Fun 𝐼)
eupth2.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
Assertion
Ref Expression
eupth2lemb (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)} = ∅)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem eupth2lemb
StepHypRef Expression
1 2z 11737 . . . . . 6 2 ∈ ℤ
2 dvds0 15374 . . . . . 6 (2 ∈ ℤ → 2 ∥ 0)
31, 2ax-mp 5 . . . . 5 2 ∥ 0
4 eupth2.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
54fvexi 6447 . . . . . . . . . . 11 𝑉 ∈ V
6 eupth2.i . . . . . . . . . . . . 13 𝐼 = (iEdg‘𝐺)
76fvexi 6447 . . . . . . . . . . . 12 𝐼 ∈ V
87resex 5680 . . . . . . . . . . 11 (𝐼 ↾ (𝐹 “ (0..^0))) ∈ V
95, 8pm3.2i 464 . . . . . . . . . 10 (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^0))) ∈ V)
10 opvtxfv 26302 . . . . . . . . . 10 ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^0))) ∈ V) → (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = 𝑉)
119, 10mp1i 13 . . . . . . . . 9 (𝜑 → (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = 𝑉)
1211eqcomd 2831 . . . . . . . 8 (𝜑𝑉 = (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩))
1312eleq2d 2892 . . . . . . 7 (𝜑 → (𝑥𝑉𝑥 ∈ (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)))
1413biimpa 470 . . . . . 6 ((𝜑𝑥𝑉) → 𝑥 ∈ (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩))
15 opiedgfv 26305 . . . . . . . . 9 ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^0))) ∈ V) → (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = (𝐼 ↾ (𝐹 “ (0..^0))))
169, 15mp1i 13 . . . . . . . 8 (𝜑 → (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = (𝐼 ↾ (𝐹 “ (0..^0))))
17 fzo0 12787 . . . . . . . . . . . 12 (0..^0) = ∅
1817imaeq2i 5705 . . . . . . . . . . 11 (𝐹 “ (0..^0)) = (𝐹 “ ∅)
19 ima0 5722 . . . . . . . . . . 11 (𝐹 “ ∅) = ∅
2018, 19eqtri 2849 . . . . . . . . . 10 (𝐹 “ (0..^0)) = ∅
2120reseq2i 5626 . . . . . . . . 9 (𝐼 ↾ (𝐹 “ (0..^0))) = (𝐼 ↾ ∅)
22 res0 5633 . . . . . . . . 9 (𝐼 ↾ ∅) = ∅
2321, 22eqtri 2849 . . . . . . . 8 (𝐼 ↾ (𝐹 “ (0..^0))) = ∅
2416, 23syl6eq 2877 . . . . . . 7 (𝜑 → (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = ∅)
2524adantr 474 . . . . . 6 ((𝜑𝑥𝑉) → (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = ∅)
26 eqid 2825 . . . . . . 7 (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)
27 eqid 2825 . . . . . . 7 (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)
2826, 27vtxdg0e 26772 . . . . . 6 ((𝑥 ∈ (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) ∧ (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩) = ∅) → ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥) = 0)
2914, 25, 28syl2anc 579 . . . . 5 ((𝜑𝑥𝑉) → ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥) = 0)
303, 29syl5breqr 4911 . . . 4 ((𝜑𝑥𝑉) → 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥))
3130notnotd 141 . . 3 ((𝜑𝑥𝑉) → ¬ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥))
3231ralrimiva 3175 . 2 (𝜑 → ∀𝑥𝑉 ¬ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥))
33 rabeq0 4186 . 2 ({𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)} = ∅ ↔ ∀𝑥𝑉 ¬ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥))
3432, 33sylibr 226 1 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1656  wcel 2164  wral 3117  {crab 3121  Vcvv 3414  c0 4144  cop 4403   class class class wbr 4873  cres 5344  cima 5345  Fun wfun 6117  cfv 6123  (class class class)co 6905  0cc0 10252  2c2 11406  cz 11704  ..^cfzo 12760  cdvds 15357  Vtxcvtx 26294  iEdgciedg 26295  UPGraphcupgr 26378  VtxDegcvtxdg 26763  EulerPathsceupth 27562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-n0 11619  df-z 11705  df-uz 11969  df-xadd 12233  df-fz 12620  df-fzo 12761  df-hash 13411  df-dvds 15358  df-vtx 26296  df-iedg 26297  df-vtxdg 26764
This theorem is referenced by:  eupth2  27605
  Copyright terms: Public domain W3C validator