| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgr1eop | Structured version Visualization version GIF version | ||
| Description: A simple graph with (at least) two different vertices and one edge. If the two vertices were not different, the edge would be a loop. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 18-Oct-2020.) |
| Ref | Expression |
|---|---|
| usgr1eop | ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 ≠ 𝐶 → 〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉 ∈ USGraph)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉) = (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉) | |
| 2 | simpllr 775 | . . 3 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → 𝐴 ∈ 𝑋) | |
| 3 | simplrl 776 | . . . 4 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ 𝑉) | |
| 4 | simpl 482 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → 𝑉 ∈ 𝑊) | |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑉 ∈ 𝑊) |
| 6 | snex 5386 | . . . . . 6 ⊢ {〈𝐴, {𝐵, 𝐶}〉} ∈ V | |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝐵 ≠ 𝐶 → {〈𝐴, {𝐵, 𝐶}〉} ∈ V) |
| 8 | opvtxfv 28907 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ {〈𝐴, {𝐵, 𝐶}〉} ∈ V) → (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉) = 𝑉) | |
| 9 | 5, 7, 8 | syl2an 596 | . . . 4 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉) = 𝑉) |
| 10 | 3, 9 | eleqtrrd 2831 | . . 3 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉)) |
| 11 | simprr 772 | . . . . 5 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
| 12 | 6 | a1i 11 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → {〈𝐴, {𝐵, 𝐶}〉} ∈ V) |
| 13 | 4, 12, 8 | syl2an 596 | . . . . 5 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉) = 𝑉) |
| 14 | 11, 13 | eleqtrrd 2831 | . . . 4 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉)) |
| 15 | 14 | adantr 480 | . . 3 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉)) |
| 16 | opiedgfv 28910 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ {〈𝐴, {𝐵, 𝐶}〉} ∈ V) → (iEdg‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉) = {〈𝐴, {𝐵, 𝐶}〉}) | |
| 17 | 5, 7, 16 | syl2an 596 | . . 3 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → (iEdg‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉) = {〈𝐴, {𝐵, 𝐶}〉}) |
| 18 | simpr 484 | . . 3 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → 𝐵 ≠ 𝐶) | |
| 19 | 1, 2, 10, 15, 17, 18 | usgr1e 29148 | . 2 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → 〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉 ∈ USGraph) |
| 20 | 19 | ex 412 | 1 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 ≠ 𝐶 → 〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉 ∈ USGraph)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 {csn 4585 {cpr 4587 〈cop 4591 ‘cfv 6499 Vtxcvtx 28899 iEdgciedg 28900 USGraphcusgr 29052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-fz 13445 df-hash 14272 df-vtx 28901 df-iedg 28902 df-edg 28951 df-uspgr 29053 df-usgr 29054 |
| This theorem is referenced by: usgr2v1e2w 29155 |
| Copyright terms: Public domain | W3C validator |