![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgr1eop | Structured version Visualization version GIF version |
Description: A simple graph with (at least) two different vertices and one edge. If the two vertices were not different, the edge would be a loop. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 18-Oct-2020.) |
Ref | Expression |
---|---|
usgr1eop | ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 ≠ 𝐶 → 〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉 ∈ USGraph)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . 3 ⊢ (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉) = (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉) | |
2 | simpllr 760 | . . 3 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → 𝐴 ∈ 𝑋) | |
3 | simplrl 762 | . . . 4 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ 𝑉) | |
4 | simpl 468 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → 𝑉 ∈ 𝑊) | |
5 | 4 | adantr 466 | . . . . 5 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑉 ∈ 𝑊) |
6 | snex 5036 | . . . . . 6 ⊢ {〈𝐴, {𝐵, 𝐶}〉} ∈ V | |
7 | 6 | a1i 11 | . . . . 5 ⊢ (𝐵 ≠ 𝐶 → {〈𝐴, {𝐵, 𝐶}〉} ∈ V) |
8 | opvtxfv 26105 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ {〈𝐴, {𝐵, 𝐶}〉} ∈ V) → (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉) = 𝑉) | |
9 | 5, 7, 8 | syl2an 583 | . . . 4 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉) = 𝑉) |
10 | 3, 9 | eleqtrrd 2853 | . . 3 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉)) |
11 | simprr 756 | . . . . 5 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
12 | 6 | a1i 11 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → {〈𝐴, {𝐵, 𝐶}〉} ∈ V) |
13 | 4, 12, 8 | syl2an 583 | . . . . 5 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉) = 𝑉) |
14 | 11, 13 | eleqtrrd 2853 | . . . 4 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉)) |
15 | 14 | adantr 466 | . . 3 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉)) |
16 | opiedgfv 26108 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ {〈𝐴, {𝐵, 𝐶}〉} ∈ V) → (iEdg‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉) = {〈𝐴, {𝐵, 𝐶}〉}) | |
17 | 5, 7, 16 | syl2an 583 | . . 3 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → (iEdg‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉) = {〈𝐴, {𝐵, 𝐶}〉}) |
18 | simpr 471 | . . 3 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → 𝐵 ≠ 𝐶) | |
19 | 1, 2, 10, 15, 17, 18 | usgr1e 26360 | . 2 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → 〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉 ∈ USGraph) |
20 | 19 | ex 397 | 1 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 ≠ 𝐶 → 〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉 ∈ USGraph)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 Vcvv 3351 {csn 4316 {cpr 4318 〈cop 4322 ‘cfv 6031 Vtxcvtx 26095 iEdgciedg 26096 USGraphcusgr 26266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8965 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-n0 11495 df-xnn0 11566 df-z 11580 df-uz 11889 df-fz 12534 df-hash 13322 df-vtx 26097 df-iedg 26098 df-edg 26161 df-uspgr 26267 df-usgr 26268 |
This theorem is referenced by: usgr2v1e2w 26367 |
Copyright terms: Public domain | W3C validator |