| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgr1eop | Structured version Visualization version GIF version | ||
| Description: A simple graph with (at least) two different vertices and one edge. If the two vertices were not different, the edge would be a loop. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 18-Oct-2020.) |
| Ref | Expression |
|---|---|
| usgr1eop | ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 ≠ 𝐶 → 〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉 ∈ USGraph)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉) = (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉) | |
| 2 | simpllr 775 | . . 3 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → 𝐴 ∈ 𝑋) | |
| 3 | simplrl 776 | . . . 4 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ 𝑉) | |
| 4 | simpl 482 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → 𝑉 ∈ 𝑊) | |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑉 ∈ 𝑊) |
| 6 | snex 5391 | . . . . . 6 ⊢ {〈𝐴, {𝐵, 𝐶}〉} ∈ V | |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝐵 ≠ 𝐶 → {〈𝐴, {𝐵, 𝐶}〉} ∈ V) |
| 8 | opvtxfv 28931 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ {〈𝐴, {𝐵, 𝐶}〉} ∈ V) → (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉) = 𝑉) | |
| 9 | 5, 7, 8 | syl2an 596 | . . . 4 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉) = 𝑉) |
| 10 | 3, 9 | eleqtrrd 2831 | . . 3 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉)) |
| 11 | simprr 772 | . . . . 5 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
| 12 | 6 | a1i 11 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → {〈𝐴, {𝐵, 𝐶}〉} ∈ V) |
| 13 | 4, 12, 8 | syl2an 596 | . . . . 5 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉) = 𝑉) |
| 14 | 11, 13 | eleqtrrd 2831 | . . . 4 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉)) |
| 15 | 14 | adantr 480 | . . 3 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ (Vtx‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉)) |
| 16 | opiedgfv 28934 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ {〈𝐴, {𝐵, 𝐶}〉} ∈ V) → (iEdg‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉) = {〈𝐴, {𝐵, 𝐶}〉}) | |
| 17 | 5, 7, 16 | syl2an 596 | . . 3 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → (iEdg‘〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉) = {〈𝐴, {𝐵, 𝐶}〉}) |
| 18 | simpr 484 | . . 3 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → 𝐵 ≠ 𝐶) | |
| 19 | 1, 2, 10, 15, 17, 18 | usgr1e 29172 | . 2 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ≠ 𝐶) → 〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉 ∈ USGraph) |
| 20 | 19 | ex 412 | 1 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 ≠ 𝐶 → 〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉 ∈ USGraph)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 {csn 4589 {cpr 4591 〈cop 4595 ‘cfv 6511 Vtxcvtx 28923 iEdgciedg 28924 USGraphcusgr 29076 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-fz 13469 df-hash 14296 df-vtx 28925 df-iedg 28926 df-edg 28975 df-uspgr 29077 df-usgr 29078 |
| This theorem is referenced by: usgr2v1e2w 29179 |
| Copyright terms: Public domain | W3C validator |