MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr1eop Structured version   Visualization version   GIF version

Theorem usgr1eop 29079
Description: A simple graph with (at least) two different vertices and one edge. If the two vertices were not different, the edge would be a loop. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 18-Oct-2020.)
Assertion
Ref Expression
usgr1eop (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → (𝐵𝐶 → ⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩ ∈ USGraph))

Proof of Theorem usgr1eop
StepHypRef Expression
1 eqid 2725 . . 3 (Vtx‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩) = (Vtx‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩)
2 simpllr 774 . . 3 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ 𝐵𝐶) → 𝐴𝑋)
3 simplrl 775 . . . 4 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ 𝐵𝐶) → 𝐵𝑉)
4 simpl 481 . . . . . 6 ((𝑉𝑊𝐴𝑋) → 𝑉𝑊)
54adantr 479 . . . . 5 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → 𝑉𝑊)
6 snex 5425 . . . . . 6 {⟨𝐴, {𝐵, 𝐶}⟩} ∈ V
76a1i 11 . . . . 5 (𝐵𝐶 → {⟨𝐴, {𝐵, 𝐶}⟩} ∈ V)
8 opvtxfv 28833 . . . . 5 ((𝑉𝑊 ∧ {⟨𝐴, {𝐵, 𝐶}⟩} ∈ V) → (Vtx‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩) = 𝑉)
95, 7, 8syl2an 594 . . . 4 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ 𝐵𝐶) → (Vtx‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩) = 𝑉)
103, 9eleqtrrd 2828 . . 3 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ 𝐵𝐶) → 𝐵 ∈ (Vtx‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩))
11 simprr 771 . . . . 5 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
126a1i 11 . . . . . 6 ((𝐵𝑉𝐶𝑉) → {⟨𝐴, {𝐵, 𝐶}⟩} ∈ V)
134, 12, 8syl2an 594 . . . . 5 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → (Vtx‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩) = 𝑉)
1411, 13eleqtrrd 2828 . . . 4 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → 𝐶 ∈ (Vtx‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩))
1514adantr 479 . . 3 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ 𝐵𝐶) → 𝐶 ∈ (Vtx‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩))
16 opiedgfv 28836 . . . 4 ((𝑉𝑊 ∧ {⟨𝐴, {𝐵, 𝐶}⟩} ∈ V) → (iEdg‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩) = {⟨𝐴, {𝐵, 𝐶}⟩})
175, 7, 16syl2an 594 . . 3 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ 𝐵𝐶) → (iEdg‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩) = {⟨𝐴, {𝐵, 𝐶}⟩})
18 simpr 483 . . 3 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ 𝐵𝐶) → 𝐵𝐶)
191, 2, 10, 15, 17, 18usgr1e 29074 . 2 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ 𝐵𝐶) → ⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩ ∈ USGraph)
2019ex 411 1 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → (𝐵𝐶 → ⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩ ∈ USGraph))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2930  Vcvv 3463  {csn 4622  {cpr 4624  cop 4628  cfv 6541  Vtxcvtx 28825  iEdgciedg 28826  USGraphcusgr 28978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4943  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-oadd 8487  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-dju 9922  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-n0 12501  df-xnn0 12573  df-z 12587  df-uz 12851  df-fz 13515  df-hash 14320  df-vtx 28827  df-iedg 28828  df-edg 28877  df-uspgr 28979  df-usgr 28980
This theorem is referenced by:  usgr2v1e2w  29081
  Copyright terms: Public domain W3C validator