MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr1eop Structured version   Visualization version   GIF version

Theorem usgr1eop 28496
Description: A simple graph with (at least) two different vertices and one edge. If the two vertices were not different, the edge would be a loop. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 18-Oct-2020.)
Assertion
Ref Expression
usgr1eop (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → (𝐵𝐶 → ⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩ ∈ USGraph))

Proof of Theorem usgr1eop
StepHypRef Expression
1 eqid 2732 . . 3 (Vtx‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩) = (Vtx‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩)
2 simpllr 774 . . 3 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ 𝐵𝐶) → 𝐴𝑋)
3 simplrl 775 . . . 4 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ 𝐵𝐶) → 𝐵𝑉)
4 simpl 483 . . . . . 6 ((𝑉𝑊𝐴𝑋) → 𝑉𝑊)
54adantr 481 . . . . 5 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → 𝑉𝑊)
6 snex 5430 . . . . . 6 {⟨𝐴, {𝐵, 𝐶}⟩} ∈ V
76a1i 11 . . . . 5 (𝐵𝐶 → {⟨𝐴, {𝐵, 𝐶}⟩} ∈ V)
8 opvtxfv 28253 . . . . 5 ((𝑉𝑊 ∧ {⟨𝐴, {𝐵, 𝐶}⟩} ∈ V) → (Vtx‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩) = 𝑉)
95, 7, 8syl2an 596 . . . 4 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ 𝐵𝐶) → (Vtx‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩) = 𝑉)
103, 9eleqtrrd 2836 . . 3 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ 𝐵𝐶) → 𝐵 ∈ (Vtx‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩))
11 simprr 771 . . . . 5 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
126a1i 11 . . . . . 6 ((𝐵𝑉𝐶𝑉) → {⟨𝐴, {𝐵, 𝐶}⟩} ∈ V)
134, 12, 8syl2an 596 . . . . 5 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → (Vtx‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩) = 𝑉)
1411, 13eleqtrrd 2836 . . . 4 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → 𝐶 ∈ (Vtx‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩))
1514adantr 481 . . 3 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ 𝐵𝐶) → 𝐶 ∈ (Vtx‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩))
16 opiedgfv 28256 . . . 4 ((𝑉𝑊 ∧ {⟨𝐴, {𝐵, 𝐶}⟩} ∈ V) → (iEdg‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩) = {⟨𝐴, {𝐵, 𝐶}⟩})
175, 7, 16syl2an 596 . . 3 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ 𝐵𝐶) → (iEdg‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩) = {⟨𝐴, {𝐵, 𝐶}⟩})
18 simpr 485 . . 3 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ 𝐵𝐶) → 𝐵𝐶)
191, 2, 10, 15, 17, 18usgr1e 28491 . 2 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ 𝐵𝐶) → ⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩ ∈ USGraph)
2019ex 413 1 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → (𝐵𝐶 → ⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩ ∈ USGraph))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  Vcvv 3474  {csn 4627  {cpr 4629  cop 4633  cfv 6540  Vtxcvtx 28245  iEdgciedg 28246  USGraphcusgr 28398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-hash 14287  df-vtx 28247  df-iedg 28248  df-edg 28297  df-uspgr 28399  df-usgr 28400
This theorem is referenced by:  usgr2v1e2w  28498
  Copyright terms: Public domain W3C validator