![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > p1evtxdeq | Structured version Visualization version GIF version |
Description: If an edge 𝐸 which does not contain vertex 𝑈 is added to a graph 𝐺 (yielding a graph 𝐹), the degree of 𝑈 is the same in both graphs. (Contributed by AV, 2-Mar-2021.) |
Ref | Expression |
---|---|
p1evtxdeq.v | ⊢ 𝑉 = (Vtx‘𝐺) |
p1evtxdeq.i | ⊢ 𝐼 = (iEdg‘𝐺) |
p1evtxdeq.f | ⊢ (𝜑 → Fun 𝐼) |
p1evtxdeq.fv | ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) |
p1evtxdeq.fi | ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) |
p1evtxdeq.k | ⊢ (𝜑 → 𝐾 ∈ 𝑋) |
p1evtxdeq.d | ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) |
p1evtxdeq.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
p1evtxdeq.e | ⊢ (𝜑 → 𝐸 ∈ 𝑌) |
p1evtxdeq.n | ⊢ (𝜑 → 𝑈 ∉ 𝐸) |
Ref | Expression |
---|---|
p1evtxdeq | ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = ((VtxDeg‘𝐺)‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p1evtxdeq.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | p1evtxdeq.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | p1evtxdeq.f | . . 3 ⊢ (𝜑 → Fun 𝐼) | |
4 | p1evtxdeq.fv | . . 3 ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) | |
5 | p1evtxdeq.fi | . . 3 ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) | |
6 | p1evtxdeq.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑋) | |
7 | p1evtxdeq.d | . . 3 ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) | |
8 | p1evtxdeq.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
9 | p1evtxdeq.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑌) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | p1evtxdeqlem 28634 | . 2 ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈))) |
11 | 1 | fvexi 6892 | . . . . . 6 ⊢ 𝑉 ∈ V |
12 | snex 5424 | . . . . . 6 ⊢ {〈𝐾, 𝐸〉} ∈ V | |
13 | 11, 12 | pm3.2i 471 | . . . . 5 ⊢ (𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) |
14 | opiedgfv 28132 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉) = {〈𝐾, 𝐸〉}) | |
15 | 13, 14 | mp1i 13 | . . . 4 ⊢ (𝜑 → (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉) = {〈𝐾, 𝐸〉}) |
16 | opvtxfv 28129 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → (Vtx‘〈𝑉, {〈𝐾, 𝐸〉}〉) = 𝑉) | |
17 | 13, 16 | mp1i 13 | . . . 4 ⊢ (𝜑 → (Vtx‘〈𝑉, {〈𝐾, 𝐸〉}〉) = 𝑉) |
18 | p1evtxdeq.n | . . . 4 ⊢ (𝜑 → 𝑈 ∉ 𝐸) | |
19 | 15, 17, 6, 8, 9, 18 | 1hevtxdg0 28627 | . . 3 ⊢ (𝜑 → ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈) = 0) |
20 | 19 | oveq2d 7409 | . 2 ⊢ (𝜑 → (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈)) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 0)) |
21 | 1 | vtxdgelxnn0 28594 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0*) |
22 | xnn0xr 12531 | . . . 4 ⊢ (((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0* → ((VtxDeg‘𝐺)‘𝑈) ∈ ℝ*) | |
23 | 8, 21, 22 | 3syl 18 | . . 3 ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝑈) ∈ ℝ*) |
24 | 23 | xaddridd 13204 | . 2 ⊢ (𝜑 → (((VtxDeg‘𝐺)‘𝑈) +𝑒 0) = ((VtxDeg‘𝐺)‘𝑈)) |
25 | 10, 20, 24 | 3eqtrd 2775 | 1 ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = ((VtxDeg‘𝐺)‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∉ wnel 3045 Vcvv 3473 ∪ cun 3942 {csn 4622 〈cop 4628 dom cdm 5669 Fun wfun 6526 ‘cfv 6532 (class class class)co 7393 0cc0 11092 ℝ*cxr 11229 ℕ0*cxnn0 12526 +𝑒 cxad 13072 Vtxcvtx 28121 iEdgciedg 28122 VtxDegcvtxdg 28587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-oadd 8452 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-dju 9878 df-card 9916 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-n0 12455 df-xnn0 12527 df-z 12541 df-uz 12805 df-xadd 13075 df-fz 13467 df-hash 14273 df-vtx 28123 df-iedg 28124 df-vtxdg 28588 |
This theorem is referenced by: vdegp1ai 28658 |
Copyright terms: Public domain | W3C validator |