MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  p1evtxdeq Structured version   Visualization version   GIF version

Theorem p1evtxdeq 29549
Description: If an edge 𝐸 which does not contain vertex 𝑈 is added to a graph 𝐺 (yielding a graph 𝐹), the degree of 𝑈 is the same in both graphs. (Contributed by AV, 2-Mar-2021.)
Hypotheses
Ref Expression
p1evtxdeq.v 𝑉 = (Vtx‘𝐺)
p1evtxdeq.i 𝐼 = (iEdg‘𝐺)
p1evtxdeq.f (𝜑 → Fun 𝐼)
p1evtxdeq.fv (𝜑 → (Vtx‘𝐹) = 𝑉)
p1evtxdeq.fi (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {⟨𝐾, 𝐸⟩}))
p1evtxdeq.k (𝜑𝐾𝑋)
p1evtxdeq.d (𝜑𝐾 ∉ dom 𝐼)
p1evtxdeq.u (𝜑𝑈𝑉)
p1evtxdeq.e (𝜑𝐸𝑌)
p1evtxdeq.n (𝜑𝑈𝐸)
Assertion
Ref Expression
p1evtxdeq (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = ((VtxDeg‘𝐺)‘𝑈))

Proof of Theorem p1evtxdeq
StepHypRef Expression
1 p1evtxdeq.v . . 3 𝑉 = (Vtx‘𝐺)
2 p1evtxdeq.i . . 3 𝐼 = (iEdg‘𝐺)
3 p1evtxdeq.f . . 3 (𝜑 → Fun 𝐼)
4 p1evtxdeq.fv . . 3 (𝜑 → (Vtx‘𝐹) = 𝑉)
5 p1evtxdeq.fi . . 3 (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {⟨𝐾, 𝐸⟩}))
6 p1evtxdeq.k . . 3 (𝜑𝐾𝑋)
7 p1evtxdeq.d . . 3 (𝜑𝐾 ∉ dom 𝐼)
8 p1evtxdeq.u . . 3 (𝜑𝑈𝑉)
9 p1evtxdeq.e . . 3 (𝜑𝐸𝑌)
101, 2, 3, 4, 5, 6, 7, 8, 9p1evtxdeqlem 29548 . 2 (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩)‘𝑈)))
111fvexi 6934 . . . . . 6 𝑉 ∈ V
12 snex 5451 . . . . . 6 {⟨𝐾, 𝐸⟩} ∈ V
1311, 12pm3.2i 470 . . . . 5 (𝑉 ∈ V ∧ {⟨𝐾, 𝐸⟩} ∈ V)
14 opiedgfv 29042 . . . . 5 ((𝑉 ∈ V ∧ {⟨𝐾, 𝐸⟩} ∈ V) → (iEdg‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩) = {⟨𝐾, 𝐸⟩})
1513, 14mp1i 13 . . . 4 (𝜑 → (iEdg‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩) = {⟨𝐾, 𝐸⟩})
16 opvtxfv 29039 . . . . 5 ((𝑉 ∈ V ∧ {⟨𝐾, 𝐸⟩} ∈ V) → (Vtx‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩) = 𝑉)
1713, 16mp1i 13 . . . 4 (𝜑 → (Vtx‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩) = 𝑉)
18 p1evtxdeq.n . . . 4 (𝜑𝑈𝐸)
1915, 17, 6, 8, 9, 181hevtxdg0 29541 . . 3 (𝜑 → ((VtxDeg‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩)‘𝑈) = 0)
2019oveq2d 7464 . 2 (𝜑 → (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩)‘𝑈)) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 0))
211vtxdgelxnn0 29508 . . . 4 (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0*)
22 xnn0xr 12630 . . . 4 (((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0* → ((VtxDeg‘𝐺)‘𝑈) ∈ ℝ*)
238, 21, 223syl 18 . . 3 (𝜑 → ((VtxDeg‘𝐺)‘𝑈) ∈ ℝ*)
2423xaddridd 13305 . 2 (𝜑 → (((VtxDeg‘𝐺)‘𝑈) +𝑒 0) = ((VtxDeg‘𝐺)‘𝑈))
2510, 20, 243eqtrd 2784 1 (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = ((VtxDeg‘𝐺)‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wnel 3052  Vcvv 3488  cun 3974  {csn 4648  cop 4654  dom cdm 5700  Fun wfun 6567  cfv 6573  (class class class)co 7448  0cc0 11184  *cxr 11323  0*cxnn0 12625   +𝑒 cxad 13173  Vtxcvtx 29031  iEdgciedg 29032  VtxDegcvtxdg 29501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-xadd 13176  df-fz 13568  df-hash 14380  df-vtx 29033  df-iedg 29034  df-vtxdg 29502
This theorem is referenced by:  vdegp1ai  29572
  Copyright terms: Public domain W3C validator