| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > p1evtxdeq | Structured version Visualization version GIF version | ||
| Description: If an edge 𝐸 which does not contain vertex 𝑈 is added to a graph 𝐺 (yielding a graph 𝐹), the degree of 𝑈 is the same in both graphs. (Contributed by AV, 2-Mar-2021.) |
| Ref | Expression |
|---|---|
| p1evtxdeq.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| p1evtxdeq.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| p1evtxdeq.f | ⊢ (𝜑 → Fun 𝐼) |
| p1evtxdeq.fv | ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) |
| p1evtxdeq.fi | ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) |
| p1evtxdeq.k | ⊢ (𝜑 → 𝐾 ∈ 𝑋) |
| p1evtxdeq.d | ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) |
| p1evtxdeq.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| p1evtxdeq.e | ⊢ (𝜑 → 𝐸 ∈ 𝑌) |
| p1evtxdeq.n | ⊢ (𝜑 → 𝑈 ∉ 𝐸) |
| Ref | Expression |
|---|---|
| p1evtxdeq | ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = ((VtxDeg‘𝐺)‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | p1evtxdeq.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | p1evtxdeq.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | p1evtxdeq.f | . . 3 ⊢ (𝜑 → Fun 𝐼) | |
| 4 | p1evtxdeq.fv | . . 3 ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) | |
| 5 | p1evtxdeq.fi | . . 3 ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) | |
| 6 | p1evtxdeq.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑋) | |
| 7 | p1evtxdeq.d | . . 3 ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) | |
| 8 | p1evtxdeq.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 9 | p1evtxdeq.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑌) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | p1evtxdeqlem 29447 | . 2 ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈))) |
| 11 | 1 | fvexi 6875 | . . . . . 6 ⊢ 𝑉 ∈ V |
| 12 | snex 5394 | . . . . . 6 ⊢ {〈𝐾, 𝐸〉} ∈ V | |
| 13 | 11, 12 | pm3.2i 470 | . . . . 5 ⊢ (𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) |
| 14 | opiedgfv 28941 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉) = {〈𝐾, 𝐸〉}) | |
| 15 | 13, 14 | mp1i 13 | . . . 4 ⊢ (𝜑 → (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉) = {〈𝐾, 𝐸〉}) |
| 16 | opvtxfv 28938 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → (Vtx‘〈𝑉, {〈𝐾, 𝐸〉}〉) = 𝑉) | |
| 17 | 13, 16 | mp1i 13 | . . . 4 ⊢ (𝜑 → (Vtx‘〈𝑉, {〈𝐾, 𝐸〉}〉) = 𝑉) |
| 18 | p1evtxdeq.n | . . . 4 ⊢ (𝜑 → 𝑈 ∉ 𝐸) | |
| 19 | 15, 17, 6, 8, 9, 18 | 1hevtxdg0 29440 | . . 3 ⊢ (𝜑 → ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈) = 0) |
| 20 | 19 | oveq2d 7406 | . 2 ⊢ (𝜑 → (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈)) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 0)) |
| 21 | 1 | vtxdgelxnn0 29407 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0*) |
| 22 | xnn0xr 12527 | . . . 4 ⊢ (((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0* → ((VtxDeg‘𝐺)‘𝑈) ∈ ℝ*) | |
| 23 | 8, 21, 22 | 3syl 18 | . . 3 ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝑈) ∈ ℝ*) |
| 24 | 23 | xaddridd 13210 | . 2 ⊢ (𝜑 → (((VtxDeg‘𝐺)‘𝑈) +𝑒 0) = ((VtxDeg‘𝐺)‘𝑈)) |
| 25 | 10, 20, 24 | 3eqtrd 2769 | 1 ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = ((VtxDeg‘𝐺)‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3030 Vcvv 3450 ∪ cun 3915 {csn 4592 〈cop 4598 dom cdm 5641 Fun wfun 6508 ‘cfv 6514 (class class class)co 7390 0cc0 11075 ℝ*cxr 11214 ℕ0*cxnn0 12522 +𝑒 cxad 13077 Vtxcvtx 28930 iEdgciedg 28931 VtxDegcvtxdg 29400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-xadd 13080 df-fz 13476 df-hash 14303 df-vtx 28932 df-iedg 28933 df-vtxdg 29401 |
| This theorem is referenced by: vdegp1ai 29471 |
| Copyright terms: Public domain | W3C validator |