MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  p1evtxdeq Structured version   Visualization version   GIF version

Theorem p1evtxdeq 29459
Description: If an edge 𝐸 which does not contain vertex 𝑈 is added to a graph 𝐺 (yielding a graph 𝐹), the degree of 𝑈 is the same in both graphs. (Contributed by AV, 2-Mar-2021.)
Hypotheses
Ref Expression
p1evtxdeq.v 𝑉 = (Vtx‘𝐺)
p1evtxdeq.i 𝐼 = (iEdg‘𝐺)
p1evtxdeq.f (𝜑 → Fun 𝐼)
p1evtxdeq.fv (𝜑 → (Vtx‘𝐹) = 𝑉)
p1evtxdeq.fi (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {⟨𝐾, 𝐸⟩}))
p1evtxdeq.k (𝜑𝐾𝑋)
p1evtxdeq.d (𝜑𝐾 ∉ dom 𝐼)
p1evtxdeq.u (𝜑𝑈𝑉)
p1evtxdeq.e (𝜑𝐸𝑌)
p1evtxdeq.n (𝜑𝑈𝐸)
Assertion
Ref Expression
p1evtxdeq (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = ((VtxDeg‘𝐺)‘𝑈))

Proof of Theorem p1evtxdeq
StepHypRef Expression
1 p1evtxdeq.v . . 3 𝑉 = (Vtx‘𝐺)
2 p1evtxdeq.i . . 3 𝐼 = (iEdg‘𝐺)
3 p1evtxdeq.f . . 3 (𝜑 → Fun 𝐼)
4 p1evtxdeq.fv . . 3 (𝜑 → (Vtx‘𝐹) = 𝑉)
5 p1evtxdeq.fi . . 3 (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {⟨𝐾, 𝐸⟩}))
6 p1evtxdeq.k . . 3 (𝜑𝐾𝑋)
7 p1evtxdeq.d . . 3 (𝜑𝐾 ∉ dom 𝐼)
8 p1evtxdeq.u . . 3 (𝜑𝑈𝑉)
9 p1evtxdeq.e . . 3 (𝜑𝐸𝑌)
101, 2, 3, 4, 5, 6, 7, 8, 9p1evtxdeqlem 29458 . 2 (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩)‘𝑈)))
111fvexi 6836 . . . . . 6 𝑉 ∈ V
12 snex 5375 . . . . . 6 {⟨𝐾, 𝐸⟩} ∈ V
1311, 12pm3.2i 470 . . . . 5 (𝑉 ∈ V ∧ {⟨𝐾, 𝐸⟩} ∈ V)
14 opiedgfv 28952 . . . . 5 ((𝑉 ∈ V ∧ {⟨𝐾, 𝐸⟩} ∈ V) → (iEdg‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩) = {⟨𝐾, 𝐸⟩})
1513, 14mp1i 13 . . . 4 (𝜑 → (iEdg‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩) = {⟨𝐾, 𝐸⟩})
16 opvtxfv 28949 . . . . 5 ((𝑉 ∈ V ∧ {⟨𝐾, 𝐸⟩} ∈ V) → (Vtx‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩) = 𝑉)
1713, 16mp1i 13 . . . 4 (𝜑 → (Vtx‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩) = 𝑉)
18 p1evtxdeq.n . . . 4 (𝜑𝑈𝐸)
1915, 17, 6, 8, 9, 181hevtxdg0 29451 . . 3 (𝜑 → ((VtxDeg‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩)‘𝑈) = 0)
2019oveq2d 7365 . 2 (𝜑 → (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩)‘𝑈)) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 0))
211vtxdgelxnn0 29418 . . . 4 (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0*)
22 xnn0xr 12462 . . . 4 (((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0* → ((VtxDeg‘𝐺)‘𝑈) ∈ ℝ*)
238, 21, 223syl 18 . . 3 (𝜑 → ((VtxDeg‘𝐺)‘𝑈) ∈ ℝ*)
2423xaddridd 13145 . 2 (𝜑 → (((VtxDeg‘𝐺)‘𝑈) +𝑒 0) = ((VtxDeg‘𝐺)‘𝑈))
2510, 20, 243eqtrd 2768 1 (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = ((VtxDeg‘𝐺)‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wnel 3029  Vcvv 3436  cun 3901  {csn 4577  cop 4583  dom cdm 5619  Fun wfun 6476  cfv 6482  (class class class)co 7349  0cc0 11009  *cxr 11148  0*cxnn0 12457   +𝑒 cxad 13012  Vtxcvtx 28941  iEdgciedg 28942  VtxDegcvtxdg 29411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-xadd 13015  df-fz 13411  df-hash 14238  df-vtx 28943  df-iedg 28944  df-vtxdg 29412
This theorem is referenced by:  vdegp1ai  29482
  Copyright terms: Public domain W3C validator