Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > p1evtxdeq | Structured version Visualization version GIF version |
Description: If an edge 𝐸 which does not contain vertex 𝑈 is added to a graph 𝐺 (yielding a graph 𝐹), the degree of 𝑈 is the same in both graphs. (Contributed by AV, 2-Mar-2021.) |
Ref | Expression |
---|---|
p1evtxdeq.v | ⊢ 𝑉 = (Vtx‘𝐺) |
p1evtxdeq.i | ⊢ 𝐼 = (iEdg‘𝐺) |
p1evtxdeq.f | ⊢ (𝜑 → Fun 𝐼) |
p1evtxdeq.fv | ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) |
p1evtxdeq.fi | ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) |
p1evtxdeq.k | ⊢ (𝜑 → 𝐾 ∈ 𝑋) |
p1evtxdeq.d | ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) |
p1evtxdeq.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
p1evtxdeq.e | ⊢ (𝜑 → 𝐸 ∈ 𝑌) |
p1evtxdeq.n | ⊢ (𝜑 → 𝑈 ∉ 𝐸) |
Ref | Expression |
---|---|
p1evtxdeq | ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = ((VtxDeg‘𝐺)‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p1evtxdeq.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | p1evtxdeq.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | p1evtxdeq.f | . . 3 ⊢ (𝜑 → Fun 𝐼) | |
4 | p1evtxdeq.fv | . . 3 ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) | |
5 | p1evtxdeq.fi | . . 3 ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) | |
6 | p1evtxdeq.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑋) | |
7 | p1evtxdeq.d | . . 3 ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) | |
8 | p1evtxdeq.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
9 | p1evtxdeq.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑌) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | p1evtxdeqlem 27401 | . 2 ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈))) |
11 | 1 | fvexi 6672 | . . . . . 6 ⊢ 𝑉 ∈ V |
12 | snex 5300 | . . . . . 6 ⊢ {〈𝐾, 𝐸〉} ∈ V | |
13 | 11, 12 | pm3.2i 474 | . . . . 5 ⊢ (𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) |
14 | opiedgfv 26899 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉) = {〈𝐾, 𝐸〉}) | |
15 | 13, 14 | mp1i 13 | . . . 4 ⊢ (𝜑 → (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉) = {〈𝐾, 𝐸〉}) |
16 | opvtxfv 26896 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → (Vtx‘〈𝑉, {〈𝐾, 𝐸〉}〉) = 𝑉) | |
17 | 13, 16 | mp1i 13 | . . . 4 ⊢ (𝜑 → (Vtx‘〈𝑉, {〈𝐾, 𝐸〉}〉) = 𝑉) |
18 | p1evtxdeq.n | . . . 4 ⊢ (𝜑 → 𝑈 ∉ 𝐸) | |
19 | 15, 17, 6, 8, 9, 18 | 1hevtxdg0 27394 | . . 3 ⊢ (𝜑 → ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈) = 0) |
20 | 19 | oveq2d 7166 | . 2 ⊢ (𝜑 → (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈)) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 0)) |
21 | 1 | vtxdgelxnn0 27361 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0*) |
22 | xnn0xr 12011 | . . . 4 ⊢ (((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0* → ((VtxDeg‘𝐺)‘𝑈) ∈ ℝ*) | |
23 | 8, 21, 22 | 3syl 18 | . . 3 ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝑈) ∈ ℝ*) |
24 | 23 | xaddid1d 12677 | . 2 ⊢ (𝜑 → (((VtxDeg‘𝐺)‘𝑈) +𝑒 0) = ((VtxDeg‘𝐺)‘𝑈)) |
25 | 10, 20, 24 | 3eqtrd 2797 | 1 ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = ((VtxDeg‘𝐺)‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∉ wnel 3055 Vcvv 3409 ∪ cun 3856 {csn 4522 〈cop 4528 dom cdm 5524 Fun wfun 6329 ‘cfv 6335 (class class class)co 7150 0cc0 10575 ℝ*cxr 10712 ℕ0*cxnn0 12006 +𝑒 cxad 12546 Vtxcvtx 26888 iEdgciedg 26889 VtxDegcvtxdg 27354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-oadd 8116 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-dju 9363 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 df-xnn0 12007 df-z 12021 df-uz 12283 df-xadd 12549 df-fz 12940 df-hash 13741 df-vtx 26890 df-iedg 26891 df-vtxdg 27355 |
This theorem is referenced by: vdegp1ai 27425 |
Copyright terms: Public domain | W3C validator |