Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gtned | Structured version Visualization version GIF version |
Description: 'Less than' implies not equal. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltned.2 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
gtned | ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltned.2 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
3 | ltne 11002 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
Copyright terms: Public domain | W3C validator |