Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polcon2bN Structured version   Visualization version   GIF version

Theorem polcon2bN 37942
Description: Contraposition law for polarity. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polss.a 𝐴 = (Atoms‘𝐾)
2polss.p = (⊥𝑃𝐾)
Assertion
Ref Expression
polcon2bN ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋 ⊆ ( 𝑌) ↔ 𝑌 ⊆ ( 𝑋)))

Proof of Theorem polcon2bN
StepHypRef Expression
1 simpl1 1190 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑋 ⊆ ( 𝑌)) → 𝐾 ∈ HL)
2 simpl3 1192 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑌𝐴)
3 simpr 485 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑋 ⊆ ( 𝑌))
4 2polss.a . . . 4 𝐴 = (Atoms‘𝐾)
5 2polss.p . . . 4 = (⊥𝑃𝐾)
64, 5polcon2N 37941 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ ( 𝑋))
71, 2, 3, 6syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ ( 𝑋))
8 simpl1 1190 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑌 ⊆ ( 𝑋)) → 𝐾 ∈ HL)
9 simpl2 1191 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑌 ⊆ ( 𝑋)) → 𝑋𝐴)
10 simpr 485 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑌 ⊆ ( 𝑋)) → 𝑌 ⊆ ( 𝑋))
114, 5polcon2N 37941 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌 ⊆ ( 𝑋)) → 𝑋 ⊆ ( 𝑌))
128, 9, 10, 11syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑌 ⊆ ( 𝑋)) → 𝑋 ⊆ ( 𝑌))
137, 12impbida 798 1 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋 ⊆ ( 𝑌) ↔ 𝑌 ⊆ ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wss 3886  cfv 6426  Atomscatm 37285  HLchlt 37372  𝑃cpolN 37924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-riotaBAD 36975
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-undef 8076  df-proset 18023  df-poset 18041  df-plt 18058  df-lub 18074  df-glb 18075  df-join 18076  df-meet 18077  df-p0 18153  df-p1 18154  df-lat 18160  df-clat 18227  df-oposet 37198  df-ol 37200  df-oml 37201  df-covers 37288  df-ats 37289  df-atl 37320  df-cvlat 37344  df-hlat 37373  df-psubsp 37525  df-pmap 37526  df-polarityN 37925
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator