Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polcon2bN Structured version   Visualization version   GIF version

Theorem polcon2bN 39877
Description: Contraposition law for polarity. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polss.a 𝐴 = (Atoms‘𝐾)
2polss.p = (⊥𝑃𝐾)
Assertion
Ref Expression
polcon2bN ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋 ⊆ ( 𝑌) ↔ 𝑌 ⊆ ( 𝑋)))

Proof of Theorem polcon2bN
StepHypRef Expression
1 simpl1 1191 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑋 ⊆ ( 𝑌)) → 𝐾 ∈ HL)
2 simpl3 1193 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑌𝐴)
3 simpr 484 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑋 ⊆ ( 𝑌))
4 2polss.a . . . 4 𝐴 = (Atoms‘𝐾)
5 2polss.p . . . 4 = (⊥𝑃𝐾)
64, 5polcon2N 39876 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ ( 𝑋))
71, 2, 3, 6syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ ( 𝑋))
8 simpl1 1191 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑌 ⊆ ( 𝑋)) → 𝐾 ∈ HL)
9 simpl2 1192 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑌 ⊆ ( 𝑋)) → 𝑋𝐴)
10 simpr 484 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑌 ⊆ ( 𝑋)) → 𝑌 ⊆ ( 𝑋))
114, 5polcon2N 39876 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌 ⊆ ( 𝑋)) → 𝑋 ⊆ ( 𝑌))
128, 9, 10, 11syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑌 ⊆ ( 𝑋)) → 𝑋 ⊆ ( 𝑌))
137, 12impbida 800 1 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋 ⊆ ( 𝑌) ↔ 𝑌 ⊆ ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wss 3976  cfv 6573  Atomscatm 39219  HLchlt 39306  𝑃cpolN 39859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-psubsp 39460  df-pmap 39461  df-polarityN 39860
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator