| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > circcn | Structured version Visualization version GIF version | ||
| Description: The function gluing the real line into the unit circle is continuous. (Contributed by Thierry Arnoux, 5-Jan-2020.) |
| Ref | Expression |
|---|---|
| circtopn.i | ⊢ 𝐼 = (0[,](2 · π)) |
| circtopn.j | ⊢ 𝐽 = (topGen‘ran (,)) |
| circtopn.f | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥))) |
| circtopn.c | ⊢ 𝐶 = (◡abs “ {1}) |
| Ref | Expression |
|---|---|
| circcn | ⊢ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | circtopn.j | . . 3 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 2 | retopon 24657 | . . 3 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
| 3 | 1, 2 | eqeltri 2825 | . 2 ⊢ 𝐽 ∈ (TopOn‘ℝ) |
| 4 | circtopn.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥))) | |
| 5 | circtopn.c | . . . 4 ⊢ 𝐶 = (◡abs “ {1}) | |
| 6 | 4, 5 | efifo 26463 | . . 3 ⊢ 𝐹:ℝ–onto→𝐶 |
| 7 | fofn 6781 | . . 3 ⊢ (𝐹:ℝ–onto→𝐶 → 𝐹 Fn ℝ) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ 𝐹 Fn ℝ |
| 9 | qtopid 23598 | . 2 ⊢ ((𝐽 ∈ (TopOn‘ℝ) ∧ 𝐹 Fn ℝ) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) | |
| 10 | 3, 8, 9 | mp2an 692 | 1 ⊢ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {csn 4597 ↦ cmpt 5196 ◡ccnv 5645 ran crn 5647 “ cima 5649 Fn wfn 6514 –onto→wfo 6517 ‘cfv 6519 (class class class)co 7394 ℝcr 11085 0cc0 11086 1c1 11087 ici 11088 · cmul 11091 2c2 12252 (,)cioo 13319 [,]cicc 13322 abscabs 15210 expce 16034 πcpi 16039 topGenctg 17406 qTop cqtop 17472 TopOnctopon 22803 Cn ccn 23117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-inf2 9612 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 ax-addf 11165 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-of 7660 df-om 7851 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-er 8682 df-map 8805 df-pm 8806 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9331 df-fi 9380 df-sup 9411 df-inf 9412 df-oi 9481 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-q 12922 df-rp 12966 df-xneg 13085 df-xadd 13086 df-xmul 13087 df-ioo 13323 df-ioc 13324 df-ico 13325 df-icc 13326 df-fz 13482 df-fzo 13629 df-fl 13766 df-mod 13844 df-seq 13977 df-exp 14037 df-fac 14249 df-bc 14278 df-hash 14306 df-shft 15043 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-sin 16042 df-cos 16043 df-pi 16045 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17391 df-topn 17392 df-0g 17410 df-gsum 17411 df-topgen 17412 df-pt 17413 df-prds 17416 df-xrs 17471 df-qtop 17476 df-imas 17477 df-xps 17479 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-mulg 19006 df-cntz 19255 df-cmn 19718 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-fbas 21267 df-fg 21268 df-cnfld 21271 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-cld 22912 df-ntr 22913 df-cls 22914 df-nei 22991 df-lp 23029 df-perf 23030 df-cn 23120 df-cnp 23121 df-haus 23208 df-tx 23455 df-hmeo 23648 df-fil 23739 df-fm 23831 df-flim 23832 df-flf 23833 df-xms 24214 df-ms 24215 df-tms 24216 df-cncf 24777 df-limc 25774 df-dv 25775 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |