![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > circcn | Structured version Visualization version GIF version |
Description: The function gluing the real line into the unit circle is continuous. (Contributed by Thierry Arnoux, 5-Jan-2020.) |
Ref | Expression |
---|---|
circtopn.i | ⊢ 𝐼 = (0[,](2 · π)) |
circtopn.j | ⊢ 𝐽 = (topGen‘ran (,)) |
circtopn.f | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥))) |
circtopn.c | ⊢ 𝐶 = (◡abs “ {1}) |
Ref | Expression |
---|---|
circcn | ⊢ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | circtopn.j | . . 3 ⊢ 𝐽 = (topGen‘ran (,)) | |
2 | retopon 24798 | . . 3 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
3 | 1, 2 | eqeltri 2834 | . 2 ⊢ 𝐽 ∈ (TopOn‘ℝ) |
4 | circtopn.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥))) | |
5 | circtopn.c | . . . 4 ⊢ 𝐶 = (◡abs “ {1}) | |
6 | 4, 5 | efifo 26598 | . . 3 ⊢ 𝐹:ℝ–onto→𝐶 |
7 | fofn 6835 | . . 3 ⊢ (𝐹:ℝ–onto→𝐶 → 𝐹 Fn ℝ) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ 𝐹 Fn ℝ |
9 | qtopid 23727 | . 2 ⊢ ((𝐽 ∈ (TopOn‘ℝ) ∧ 𝐹 Fn ℝ) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) | |
10 | 3, 8, 9 | mp2an 691 | 1 ⊢ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2103 {csn 4648 ↦ cmpt 5252 ◡ccnv 5698 ran crn 5700 “ cima 5702 Fn wfn 6567 –onto→wfo 6570 ‘cfv 6572 (class class class)co 7445 ℝcr 11179 0cc0 11180 1c1 11181 ici 11182 · cmul 11185 2c2 12344 (,)cioo 13403 [,]cicc 13406 abscabs 15279 expce 16103 πcpi 16108 topGenctg 17492 qTop cqtop 17558 TopOnctopon 22930 Cn ccn 23246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-inf2 9706 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 ax-pre-sup 11258 ax-addf 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3383 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4973 df-iun 5021 df-iin 5022 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-se 5655 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-isom 6581 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-of 7710 df-om 7900 df-1st 8026 df-2nd 8027 df-supp 8198 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-1o 8518 df-2o 8519 df-er 8759 df-map 8882 df-pm 8883 df-ixp 8952 df-en 9000 df-dom 9001 df-sdom 9002 df-fin 9003 df-fsupp 9428 df-fi 9476 df-sup 9507 df-inf 9508 df-oi 9575 df-card 10004 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-div 11944 df-nn 12290 df-2 12352 df-3 12353 df-4 12354 df-5 12355 df-6 12356 df-7 12357 df-8 12358 df-9 12359 df-n0 12550 df-z 12636 df-dec 12755 df-uz 12900 df-q 13010 df-rp 13054 df-xneg 13171 df-xadd 13172 df-xmul 13173 df-ioo 13407 df-ioc 13408 df-ico 13409 df-icc 13410 df-fz 13564 df-fzo 13708 df-fl 13839 df-mod 13917 df-seq 14049 df-exp 14109 df-fac 14319 df-bc 14348 df-hash 14376 df-shft 15112 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-limsup 15513 df-clim 15530 df-rlim 15531 df-sum 15731 df-ef 16109 df-sin 16111 df-cos 16112 df-pi 16114 df-struct 17189 df-sets 17206 df-slot 17224 df-ndx 17236 df-base 17254 df-ress 17283 df-plusg 17319 df-mulr 17320 df-starv 17321 df-sca 17322 df-vsca 17323 df-ip 17324 df-tset 17325 df-ple 17326 df-ds 17328 df-unif 17329 df-hom 17330 df-cco 17331 df-rest 17477 df-topn 17478 df-0g 17496 df-gsum 17497 df-topgen 17498 df-pt 17499 df-prds 17502 df-xrs 17557 df-qtop 17562 df-imas 17563 df-xps 17565 df-mre 17639 df-mrc 17640 df-acs 17642 df-mgm 18673 df-sgrp 18752 df-mnd 18768 df-submnd 18814 df-mulg 19103 df-cntz 19352 df-cmn 19819 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-top 22914 df-topon 22931 df-topsp 22953 df-bases 22967 df-cld 23041 df-ntr 23042 df-cls 23043 df-nei 23120 df-lp 23158 df-perf 23159 df-cn 23249 df-cnp 23250 df-haus 23337 df-tx 23584 df-hmeo 23777 df-fil 23868 df-fm 23960 df-flim 23961 df-flf 23962 df-xms 24344 df-ms 24345 df-tms 24346 df-cncf 24916 df-limc 25913 df-dv 25914 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |