![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankidn | Structured version Visualization version GIF version |
Description: A relationship between the rank function and the cumulative hierarchy of sets function π 1. (Contributed by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankidn | β’ (π΄ β βͺ (π 1 β On) β Β¬ π΄ β (π 1β(rankβπ΄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . . 3 β’ (rankβπ΄) = (rankβπ΄) | |
2 | rankr1c 9818 | . . 3 β’ (π΄ β βͺ (π 1 β On) β ((rankβπ΄) = (rankβπ΄) β (Β¬ π΄ β (π 1β(rankβπ΄)) β§ π΄ β (π 1βsuc (rankβπ΄))))) | |
3 | 1, 2 | mpbii 232 | . 2 β’ (π΄ β βͺ (π 1 β On) β (Β¬ π΄ β (π 1β(rankβπ΄)) β§ π΄ β (π 1βsuc (rankβπ΄)))) |
4 | 3 | simpld 493 | 1 β’ (π΄ β βͺ (π 1 β On) β Β¬ π΄ β (π 1β(rankβπ΄))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 βͺ cuni 4907 β cima 5678 Oncon0 6363 suc csuc 6365 βcfv 6542 π 1cr1 9759 rankcrnk 9760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-r1 9761 df-rank 9762 |
This theorem is referenced by: rankpwi 9820 rankelb 9821 |
Copyright terms: Public domain | W3C validator |