MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmulbrOLD Structured version   Visualization version   GIF version

Theorem dvmulbrOLD 25858
Description: Obsolete version of dvmulbr 25857 as of 10-Apr-2025. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvadd.f (𝜑𝐹:𝑋⟶ℂ)
dvadd.x (𝜑𝑋𝑆)
dvadd.g (𝜑𝐺:𝑌⟶ℂ)
dvadd.y (𝜑𝑌𝑆)
dvaddbr.s (𝜑𝑆 ⊆ ℂ)
dvadd.bf (𝜑𝐶(𝑆 D 𝐹)𝐾)
dvadd.bg (𝜑𝐶(𝑆 D 𝐺)𝐿)
dvadd.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
dvmulbrOLD (𝜑𝐶(𝑆 D (𝐹f · 𝐺))((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))))

Proof of Theorem dvmulbrOLD
Dummy variables 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.bf . . . . . 6 (𝜑𝐶(𝑆 D 𝐹)𝐾)
2 eqid 2729 . . . . . . 7 (𝐽t 𝑆) = (𝐽t 𝑆)
3 dvadd.j . . . . . . 7 𝐽 = (TopOpen‘ℂfld)
4 eqid 2729 . . . . . . 7 (𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) = (𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)))
5 dvaddbr.s . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
6 dvadd.f . . . . . . 7 (𝜑𝐹:𝑋⟶ℂ)
7 dvadd.x . . . . . . 7 (𝜑𝑋𝑆)
82, 3, 4, 5, 6, 7eldv 25815 . . . . . 6 (𝜑 → (𝐶(𝑆 D 𝐹)𝐾 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))))
91, 8mpbid 232 . . . . 5 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶)))
109simpld 494 . . . 4 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋))
11 dvadd.bg . . . . . 6 (𝜑𝐶(𝑆 D 𝐺)𝐿)
12 eqid 2729 . . . . . . 7 (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
13 dvadd.g . . . . . . 7 (𝜑𝐺:𝑌⟶ℂ)
14 dvadd.y . . . . . . 7 (𝜑𝑌𝑆)
152, 3, 12, 5, 13, 14eldv 25815 . . . . . 6 (𝜑 → (𝐶(𝑆 D 𝐺)𝐿 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))))
1611, 15mpbid 232 . . . . 5 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶)))
1716simpld 494 . . . 4 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑌))
1810, 17elind 4153 . . 3 (𝜑𝐶 ∈ (((int‘(𝐽t 𝑆))‘𝑋) ∩ ((int‘(𝐽t 𝑆))‘𝑌)))
193cnfldtopon 24686 . . . . . 6 𝐽 ∈ (TopOn‘ℂ)
20 resttopon 23064 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
2119, 5, 20sylancr 587 . . . . 5 (𝜑 → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
22 topontop 22816 . . . . 5 ((𝐽t 𝑆) ∈ (TopOn‘𝑆) → (𝐽t 𝑆) ∈ Top)
2321, 22syl 17 . . . 4 (𝜑 → (𝐽t 𝑆) ∈ Top)
24 toponuni 22817 . . . . . 6 ((𝐽t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = (𝐽t 𝑆))
2521, 24syl 17 . . . . 5 (𝜑𝑆 = (𝐽t 𝑆))
267, 25sseqtrd 3974 . . . 4 (𝜑𝑋 (𝐽t 𝑆))
2714, 25sseqtrd 3974 . . . 4 (𝜑𝑌 (𝐽t 𝑆))
28 eqid 2729 . . . . 5 (𝐽t 𝑆) = (𝐽t 𝑆)
2928ntrin 22964 . . . 4 (((𝐽t 𝑆) ∈ Top ∧ 𝑋 (𝐽t 𝑆) ∧ 𝑌 (𝐽t 𝑆)) → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘𝑋) ∩ ((int‘(𝐽t 𝑆))‘𝑌)))
3023, 26, 27, 29syl3anc 1373 . . 3 (𝜑 → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘𝑋) ∩ ((int‘(𝐽t 𝑆))‘𝑌)))
3118, 30eleqtrrd 2831 . 2 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘(𝑋𝑌)))
326adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐹:𝑋⟶ℂ)
33 inss1 4190 . . . . . . . . 9 (𝑋𝑌) ⊆ 𝑋
34 eldifi 4084 . . . . . . . . . 10 (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) → 𝑧 ∈ (𝑋𝑌))
3534adantl 481 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧 ∈ (𝑋𝑌))
3633, 35sselid 3935 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧𝑋)
3732, 36ffvelcdmd 7023 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝐹𝑧) ∈ ℂ)
385, 6, 7dvbss 25818 . . . . . . . . . 10 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋)
39 reldv 25787 . . . . . . . . . . 11 Rel (𝑆 D 𝐹)
40 releldm 5890 . . . . . . . . . . 11 ((Rel (𝑆 D 𝐹) ∧ 𝐶(𝑆 D 𝐹)𝐾) → 𝐶 ∈ dom (𝑆 D 𝐹))
4139, 1, 40sylancr 587 . . . . . . . . . 10 (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
4238, 41sseldd 3938 . . . . . . . . 9 (𝜑𝐶𝑋)
436, 42ffvelcdmd 7023 . . . . . . . 8 (𝜑 → (𝐹𝐶) ∈ ℂ)
4443adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝐹𝐶) ∈ ℂ)
4537, 44subcld 11493 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝑧) − (𝐹𝐶)) ∈ ℂ)
467, 5sstrd 3948 . . . . . . . . 9 (𝜑𝑋 ⊆ ℂ)
4746adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑋 ⊆ ℂ)
4847, 36sseldd 3938 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧 ∈ ℂ)
4946, 42sseldd 3938 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
5049adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐶 ∈ ℂ)
5148, 50subcld 11493 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝑧𝐶) ∈ ℂ)
52 eldifsni 4744 . . . . . . . 8 (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) → 𝑧𝐶)
5352adantl 481 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧𝐶)
5448, 50, 53subne0d 11502 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝑧𝐶) ≠ 0)
5545, 51, 54divcld 11918 . . . . 5 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) ∈ ℂ)
5613adantr 480 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐺:𝑌⟶ℂ)
57 inss2 4191 . . . . . . 7 (𝑋𝑌) ⊆ 𝑌
5857, 35sselid 3935 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧𝑌)
5956, 58ffvelcdmd 7023 . . . . 5 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝐺𝑧) ∈ ℂ)
6055, 59mulcld 11154 . . . 4 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) ∈ ℂ)
61 ssdif 4097 . . . . . . . 8 ((𝑋𝑌) ⊆ 𝑌 → ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑌 ∖ {𝐶}))
6257, 61mp1i 13 . . . . . . 7 (𝜑 → ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑌 ∖ {𝐶}))
6362sselda 3937 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧 ∈ (𝑌 ∖ {𝐶}))
6414, 5sstrd 3948 . . . . . . 7 (𝜑𝑌 ⊆ ℂ)
655, 13, 14dvbss 25818 . . . . . . . 8 (𝜑 → dom (𝑆 D 𝐺) ⊆ 𝑌)
66 reldv 25787 . . . . . . . . 9 Rel (𝑆 D 𝐺)
67 releldm 5890 . . . . . . . . 9 ((Rel (𝑆 D 𝐺) ∧ 𝐶(𝑆 D 𝐺)𝐿) → 𝐶 ∈ dom (𝑆 D 𝐺))
6866, 11, 67sylancr 587 . . . . . . . 8 (𝜑𝐶 ∈ dom (𝑆 D 𝐺))
6965, 68sseldd 3938 . . . . . . 7 (𝜑𝐶𝑌)
7013, 64, 69dvlem 25813 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
7163, 70syldan 591 . . . . 5 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
7271, 44mulcld 11154 . . . 4 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)) ∈ ℂ)
73 ssidd 3961 . . . 4 (𝜑 → ℂ ⊆ ℂ)
74 txtopon 23494 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐽 ∈ (TopOn‘ℂ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ)))
7519, 19, 74mp2an 692 . . . . 5 (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ))
7675toponrestid 22824 . . . 4 (𝐽 ×t 𝐽) = ((𝐽 ×t 𝐽) ↾t (ℂ × ℂ))
779simprd 495 . . . . . 6 (𝜑𝐾 ∈ ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
786, 46, 42dvlem 25813 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) ∈ ℂ)
7978fmpttd 7053 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))):(𝑋 ∖ {𝐶})⟶ℂ)
80 ssdif 4097 . . . . . . . . 9 ((𝑋𝑌) ⊆ 𝑋 → ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑋 ∖ {𝐶}))
8133, 80mp1i 13 . . . . . . . 8 (𝜑 → ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑋 ∖ {𝐶}))
8246ssdifssd 4100 . . . . . . . 8 (𝜑 → (𝑋 ∖ {𝐶}) ⊆ ℂ)
83 eqid 2729 . . . . . . . 8 (𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶})) = (𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶}))
8433, 7sstrid 3949 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋𝑌) ⊆ 𝑆)
8584, 25sseqtrd 3974 . . . . . . . . . . . . . 14 (𝜑 → (𝑋𝑌) ⊆ (𝐽t 𝑆))
86 difssd 4090 . . . . . . . . . . . . . 14 (𝜑 → ( (𝐽t 𝑆) ∖ 𝑋) ⊆ (𝐽t 𝑆))
8785, 86unssd 4145 . . . . . . . . . . . . 13 (𝜑 → ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋)) ⊆ (𝐽t 𝑆))
88 ssun1 4131 . . . . . . . . . . . . . 14 (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))
8988a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋)))
9028ntrss 22958 . . . . . . . . . . . . 13 (((𝐽t 𝑆) ∈ Top ∧ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋)) ⊆ (𝐽t 𝑆) ∧ (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ⊆ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))))
9123, 87, 89, 90syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ⊆ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))))
9291, 31sseldd 3938 . . . . . . . . . . 11 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))))
9392, 42elind 4153 . . . . . . . . . 10 (𝜑𝐶 ∈ (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) ∩ 𝑋))
9433a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑋𝑌) ⊆ 𝑋)
95 eqid 2729 . . . . . . . . . . . . 13 ((𝐽t 𝑆) ↾t 𝑋) = ((𝐽t 𝑆) ↾t 𝑋)
9628, 95restntr 23085 . . . . . . . . . . . 12 (((𝐽t 𝑆) ∈ Top ∧ 𝑋 (𝐽t 𝑆) ∧ (𝑋𝑌) ⊆ 𝑋) → ((int‘((𝐽t 𝑆) ↾t 𝑋))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) ∩ 𝑋))
9723, 26, 94, 96syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ((int‘((𝐽t 𝑆) ↾t 𝑋))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) ∩ 𝑋))
983cnfldtop 24687 . . . . . . . . . . . . . . 15 𝐽 ∈ Top
9998a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐽 ∈ Top)
100 cnex 11109 . . . . . . . . . . . . . . 15 ℂ ∈ V
101 ssexg 5265 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
1025, 100, 101sylancl 586 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ V)
103 restabs 23068 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑋𝑆𝑆 ∈ V) → ((𝐽t 𝑆) ↾t 𝑋) = (𝐽t 𝑋))
10499, 7, 102, 103syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → ((𝐽t 𝑆) ↾t 𝑋) = (𝐽t 𝑋))
105104fveq2d 6830 . . . . . . . . . . . 12 (𝜑 → (int‘((𝐽t 𝑆) ↾t 𝑋)) = (int‘(𝐽t 𝑋)))
106105fveq1d 6828 . . . . . . . . . . 11 (𝜑 → ((int‘((𝐽t 𝑆) ↾t 𝑋))‘(𝑋𝑌)) = ((int‘(𝐽t 𝑋))‘(𝑋𝑌)))
10797, 106eqtr3d 2766 . . . . . . . . . 10 (𝜑 → (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) ∩ 𝑋) = ((int‘(𝐽t 𝑋))‘(𝑋𝑌)))
10893, 107eleqtrd 2830 . . . . . . . . 9 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑋))‘(𝑋𝑌)))
109 undif1 4429 . . . . . . . . . . . . 13 ((𝑋 ∖ {𝐶}) ∪ {𝐶}) = (𝑋 ∪ {𝐶})
11042snssd 4763 . . . . . . . . . . . . . 14 (𝜑 → {𝐶} ⊆ 𝑋)
111 ssequn2 4142 . . . . . . . . . . . . . 14 ({𝐶} ⊆ 𝑋 ↔ (𝑋 ∪ {𝐶}) = 𝑋)
112110, 111sylib 218 . . . . . . . . . . . . 13 (𝜑 → (𝑋 ∪ {𝐶}) = 𝑋)
113109, 112eqtrid 2776 . . . . . . . . . . . 12 (𝜑 → ((𝑋 ∖ {𝐶}) ∪ {𝐶}) = 𝑋)
114113oveq2d 7369 . . . . . . . . . . 11 (𝜑 → (𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶})) = (𝐽t 𝑋))
115114fveq2d 6830 . . . . . . . . . 10 (𝜑 → (int‘(𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶}))) = (int‘(𝐽t 𝑋)))
116 undif1 4429 . . . . . . . . . . 11 (((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶}) = ((𝑋𝑌) ∪ {𝐶})
11742, 69elind 4153 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ (𝑋𝑌))
118117snssd 4763 . . . . . . . . . . . 12 (𝜑 → {𝐶} ⊆ (𝑋𝑌))
119 ssequn2 4142 . . . . . . . . . . . 12 ({𝐶} ⊆ (𝑋𝑌) ↔ ((𝑋𝑌) ∪ {𝐶}) = (𝑋𝑌))
120118, 119sylib 218 . . . . . . . . . . 11 (𝜑 → ((𝑋𝑌) ∪ {𝐶}) = (𝑋𝑌))
121116, 120eqtrid 2776 . . . . . . . . . 10 (𝜑 → (((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶}) = (𝑋𝑌))
122115, 121fveq12d 6833 . . . . . . . . 9 (𝜑 → ((int‘(𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})) = ((int‘(𝐽t 𝑋))‘(𝑋𝑌)))
123108, 122eleqtrrd 2831 . . . . . . . 8 (𝜑𝐶 ∈ ((int‘(𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})))
12479, 81, 82, 3, 83, 123limcres 25803 . . . . . . 7 (𝜑 → (((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
12581resmptd 5995 . . . . . . . 8 (𝜑 → ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))))
126125oveq1d 7368 . . . . . . 7 (𝜑 → (((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
127124, 126eqtr3d 2766 . . . . . 6 (𝜑 → ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
12877, 127eleqtrd 2830 . . . . 5 (𝜑𝐾 ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
129 eqid 2729 . . . . . . . . . 10 (𝐽t 𝑌) = (𝐽t 𝑌)
130129, 3dvcnp2 25837 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐺:𝑌⟶ℂ ∧ 𝑌𝑆) ∧ 𝐶 ∈ dom (𝑆 D 𝐺)) → 𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶))
1315, 13, 14, 68, 130syl31anc 1375 . . . . . . . 8 (𝜑𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶))
1323, 129cnplimc 25804 . . . . . . . . 9 ((𝑌 ⊆ ℂ ∧ 𝐶𝑌) → (𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶))))
13364, 69, 132syl2anc 584 . . . . . . . 8 (𝜑 → (𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶))))
134131, 133mpbid 232 . . . . . . 7 (𝜑 → (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶)))
135134simprd 495 . . . . . 6 (𝜑 → (𝐺𝐶) ∈ (𝐺 lim 𝐶))
136 difss 4089 . . . . . . . . . 10 ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑋𝑌)
137136, 57sstri 3947 . . . . . . . . 9 ((𝑋𝑌) ∖ {𝐶}) ⊆ 𝑌
138137a1i 11 . . . . . . . 8 (𝜑 → ((𝑋𝑌) ∖ {𝐶}) ⊆ 𝑌)
139 eqid 2729 . . . . . . . 8 (𝐽t (𝑌 ∪ {𝐶})) = (𝐽t (𝑌 ∪ {𝐶}))
140 difssd 4090 . . . . . . . . . . . . . 14 (𝜑 → ( (𝐽t 𝑆) ∖ 𝑌) ⊆ (𝐽t 𝑆))
14185, 140unssd 4145 . . . . . . . . . . . . 13 (𝜑 → ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌)) ⊆ (𝐽t 𝑆))
142 ssun1 4131 . . . . . . . . . . . . . 14 (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))
143142a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌)))
14428ntrss 22958 . . . . . . . . . . . . 13 (((𝐽t 𝑆) ∈ Top ∧ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌)) ⊆ (𝐽t 𝑆) ∧ (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ⊆ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))))
14523, 141, 143, 144syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ⊆ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))))
146145, 31sseldd 3938 . . . . . . . . . . 11 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))))
147146, 69elind 4153 . . . . . . . . . 10 (𝜑𝐶 ∈ (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) ∩ 𝑌))
14857a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑋𝑌) ⊆ 𝑌)
149 eqid 2729 . . . . . . . . . . . . 13 ((𝐽t 𝑆) ↾t 𝑌) = ((𝐽t 𝑆) ↾t 𝑌)
15028, 149restntr 23085 . . . . . . . . . . . 12 (((𝐽t 𝑆) ∈ Top ∧ 𝑌 (𝐽t 𝑆) ∧ (𝑋𝑌) ⊆ 𝑌) → ((int‘((𝐽t 𝑆) ↾t 𝑌))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) ∩ 𝑌))
15123, 27, 148, 150syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ((int‘((𝐽t 𝑆) ↾t 𝑌))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) ∩ 𝑌))
152 restabs 23068 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑌𝑆𝑆 ∈ V) → ((𝐽t 𝑆) ↾t 𝑌) = (𝐽t 𝑌))
15399, 14, 102, 152syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → ((𝐽t 𝑆) ↾t 𝑌) = (𝐽t 𝑌))
154153fveq2d 6830 . . . . . . . . . . . 12 (𝜑 → (int‘((𝐽t 𝑆) ↾t 𝑌)) = (int‘(𝐽t 𝑌)))
155154fveq1d 6828 . . . . . . . . . . 11 (𝜑 → ((int‘((𝐽t 𝑆) ↾t 𝑌))‘(𝑋𝑌)) = ((int‘(𝐽t 𝑌))‘(𝑋𝑌)))
156151, 155eqtr3d 2766 . . . . . . . . . 10 (𝜑 → (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) ∩ 𝑌) = ((int‘(𝐽t 𝑌))‘(𝑋𝑌)))
157147, 156eleqtrd 2830 . . . . . . . . 9 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑌))‘(𝑋𝑌)))
15869snssd 4763 . . . . . . . . . . . . 13 (𝜑 → {𝐶} ⊆ 𝑌)
159 ssequn2 4142 . . . . . . . . . . . . 13 ({𝐶} ⊆ 𝑌 ↔ (𝑌 ∪ {𝐶}) = 𝑌)
160158, 159sylib 218 . . . . . . . . . . . 12 (𝜑 → (𝑌 ∪ {𝐶}) = 𝑌)
161160oveq2d 7369 . . . . . . . . . . 11 (𝜑 → (𝐽t (𝑌 ∪ {𝐶})) = (𝐽t 𝑌))
162161fveq2d 6830 . . . . . . . . . 10 (𝜑 → (int‘(𝐽t (𝑌 ∪ {𝐶}))) = (int‘(𝐽t 𝑌)))
163162, 121fveq12d 6833 . . . . . . . . 9 (𝜑 → ((int‘(𝐽t (𝑌 ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})) = ((int‘(𝐽t 𝑌))‘(𝑋𝑌)))
164157, 163eleqtrrd 2831 . . . . . . . 8 (𝜑𝐶 ∈ ((int‘(𝐽t (𝑌 ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})))
16513, 138, 64, 3, 139, 164limcres 25803 . . . . . . 7 (𝜑 → ((𝐺 ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = (𝐺 lim 𝐶))
16613, 138feqresmpt 6896 . . . . . . . 8 (𝜑 → (𝐺 ↾ ((𝑋𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐺𝑧)))
167166oveq1d 7368 . . . . . . 7 (𝜑 → ((𝐺 ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐺𝑧)) lim 𝐶))
168165, 167eqtr3d 2766 . . . . . 6 (𝜑 → (𝐺 lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐺𝑧)) lim 𝐶))
169135, 168eleqtrd 2830 . . . . 5 (𝜑 → (𝐺𝐶) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐺𝑧)) lim 𝐶))
1703mulcn 24772 . . . . . 6 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
1715, 6, 7dvcl 25816 . . . . . . . 8 ((𝜑𝐶(𝑆 D 𝐹)𝐾) → 𝐾 ∈ ℂ)
1721, 171mpdan 687 . . . . . . 7 (𝜑𝐾 ∈ ℂ)
17313, 69ffvelcdmd 7023 . . . . . . 7 (𝜑 → (𝐺𝐶) ∈ ℂ)
174172, 173opelxpd 5662 . . . . . 6 (𝜑 → ⟨𝐾, (𝐺𝐶)⟩ ∈ (ℂ × ℂ))
17575toponunii 22819 . . . . . . 7 (ℂ × ℂ) = (𝐽 ×t 𝐽)
176175cncnpi 23181 . . . . . 6 (( · ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝐾, (𝐺𝐶)⟩ ∈ (ℂ × ℂ)) → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, (𝐺𝐶)⟩))
177170, 174, 176sylancr 587 . . . . 5 (𝜑 → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, (𝐺𝐶)⟩))
17855, 59, 73, 73, 3, 76, 128, 169, 177limccnp2 25809 . . . 4 (𝜑 → (𝐾 · (𝐺𝐶)) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧))) lim 𝐶))
17916simprd 495 . . . . . 6 (𝜑𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
18070fmpttd 7053 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))):(𝑌 ∖ {𝐶})⟶ℂ)
18164ssdifssd 4100 . . . . . . . 8 (𝜑 → (𝑌 ∖ {𝐶}) ⊆ ℂ)
182 eqid 2729 . . . . . . . 8 (𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶})) = (𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶}))
183 undif1 4429 . . . . . . . . . . . . 13 ((𝑌 ∖ {𝐶}) ∪ {𝐶}) = (𝑌 ∪ {𝐶})
184183, 160eqtrid 2776 . . . . . . . . . . . 12 (𝜑 → ((𝑌 ∖ {𝐶}) ∪ {𝐶}) = 𝑌)
185184oveq2d 7369 . . . . . . . . . . 11 (𝜑 → (𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶})) = (𝐽t 𝑌))
186185fveq2d 6830 . . . . . . . . . 10 (𝜑 → (int‘(𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶}))) = (int‘(𝐽t 𝑌)))
187186, 121fveq12d 6833 . . . . . . . . 9 (𝜑 → ((int‘(𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})) = ((int‘(𝐽t 𝑌))‘(𝑋𝑌)))
188157, 187eleqtrrd 2831 . . . . . . . 8 (𝜑𝐶 ∈ ((int‘(𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})))
189180, 62, 181, 3, 182, 188limcres 25803 . . . . . . 7 (𝜑 → (((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
19062resmptd 5995 . . . . . . . 8 (𝜑 → ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
191190oveq1d 7368 . . . . . . 7 (𝜑 → (((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
192189, 191eqtr3d 2766 . . . . . 6 (𝜑 → ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
193179, 192eleqtrd 2830 . . . . 5 (𝜑𝐿 ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
19484, 5sstrd 3948 . . . . . . . 8 (𝜑 → (𝑋𝑌) ⊆ ℂ)
195 cncfmptc 24821 . . . . . . . 8 (((𝐹𝐶) ∈ ℂ ∧ (𝑋𝑌) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) ∈ ((𝑋𝑌)–cn→ℂ))
19643, 194, 73, 195syl3anc 1373 . . . . . . 7 (𝜑 → (𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) ∈ ((𝑋𝑌)–cn→ℂ))
197 eqidd 2730 . . . . . . 7 (𝑧 = 𝐶 → (𝐹𝐶) = (𝐹𝐶))
198196, 117, 197cnmptlimc 25807 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ ((𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) lim 𝐶))
19943adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑋𝑌)) → (𝐹𝐶) ∈ ℂ)
200199fmpttd 7053 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)):(𝑋𝑌)⟶ℂ)
201200limcdif 25793 . . . . . . 7 (𝜑 → ((𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) lim 𝐶) = (((𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶))
202 resmpt 5992 . . . . . . . . 9 (((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑋𝑌) → ((𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) ↾ ((𝑋𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐹𝐶)))
203136, 202mp1i 13 . . . . . . . 8 (𝜑 → ((𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) ↾ ((𝑋𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐹𝐶)))
204203oveq1d 7368 . . . . . . 7 (𝜑 → (((𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐹𝐶)) lim 𝐶))
205201, 204eqtrd 2764 . . . . . 6 (𝜑 → ((𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐹𝐶)) lim 𝐶))
206198, 205eleqtrd 2830 . . . . 5 (𝜑 → (𝐹𝐶) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐹𝐶)) lim 𝐶))
2075, 13, 14dvcl 25816 . . . . . . . 8 ((𝜑𝐶(𝑆 D 𝐺)𝐿) → 𝐿 ∈ ℂ)
20811, 207mpdan 687 . . . . . . 7 (𝜑𝐿 ∈ ℂ)
209208, 43opelxpd 5662 . . . . . 6 (𝜑 → ⟨𝐿, (𝐹𝐶)⟩ ∈ (ℂ × ℂ))
210175cncnpi 23181 . . . . . 6 (( · ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝐿, (𝐹𝐶)⟩ ∈ (ℂ × ℂ)) → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐿, (𝐹𝐶)⟩))
211170, 209, 210sylancr 587 . . . . 5 (𝜑 → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐿, (𝐹𝐶)⟩))
21271, 44, 73, 73, 3, 76, 193, 206, 211limccnp2 25809 . . . 4 (𝜑 → (𝐿 · (𝐹𝐶)) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶))) lim 𝐶))
2133addcn 24770 . . . . 5 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
214172, 173mulcld 11154 . . . . . 6 (𝜑 → (𝐾 · (𝐺𝐶)) ∈ ℂ)
215208, 43mulcld 11154 . . . . . 6 (𝜑 → (𝐿 · (𝐹𝐶)) ∈ ℂ)
216214, 215opelxpd 5662 . . . . 5 (𝜑 → ⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩ ∈ (ℂ × ℂ))
217175cncnpi 23181 . . . . 5 (( + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩ ∈ (ℂ × ℂ)) → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩))
218213, 216, 217sylancr 587 . . . 4 (𝜑 → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩))
21960, 72, 73, 73, 3, 76, 178, 212, 218limccnp2 25809 . . 3 (𝜑 → ((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))) lim 𝐶))
22042adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐶𝑋)
22132, 220ffvelcdmd 7023 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝐹𝐶) ∈ ℂ)
22237, 221subcld 11493 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝑧) − (𝐹𝐶)) ∈ ℂ)
223222, 59mulcld 11154 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) ∈ ℂ)
22469adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐶𝑌)
22556, 224ffvelcdmd 7023 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝐺𝐶) ∈ ℂ)
22659, 225subcld 11493 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐺𝑧) − (𝐺𝐶)) ∈ ℂ)
227226, 221mulcld 11154 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) ∈ ℂ)
22847, 220sseldd 3938 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐶 ∈ ℂ)
22948, 228subcld 11493 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝑧𝐶) ∈ ℂ)
230223, 227, 229, 54divdird 11956 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) / (𝑧𝐶)) = (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) / (𝑧𝐶)) + ((((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) / (𝑧𝐶))))
23137, 59mulcld 11154 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝑧) · (𝐺𝑧)) ∈ ℂ)
232221, 59mulcld 11154 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝐶) · (𝐺𝑧)) ∈ ℂ)
233221, 225mulcld 11154 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝐶) · (𝐺𝐶)) ∈ ℂ)
234231, 232, 233npncand 11517 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝑧))) + (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶)))) = (((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
23537, 221, 59subdird 11595 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) = (((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝑧))))
236226, 221mulcomd 11155 . . . . . . . . . 10 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) = ((𝐹𝐶) · ((𝐺𝑧) − (𝐺𝐶))))
237221, 59, 225subdid 11594 . . . . . . . . . 10 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝐶) · ((𝐺𝑧) − (𝐺𝐶))) = (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
238236, 237eqtrd 2764 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) = (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
239235, 238oveq12d 7371 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) = ((((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝑧))) + (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶)))))
2406ffnd 6657 . . . . . . . . . . . 12 (𝜑𝐹 Fn 𝑋)
241240adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐹 Fn 𝑋)
24213ffnd 6657 . . . . . . . . . . . 12 (𝜑𝐺 Fn 𝑌)
243242adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐺 Fn 𝑌)
244 ssexg 5265 . . . . . . . . . . . . 13 ((𝑋 ⊆ ℂ ∧ ℂ ∈ V) → 𝑋 ∈ V)
24546, 100, 244sylancl 586 . . . . . . . . . . . 12 (𝜑𝑋 ∈ V)
246245adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑋 ∈ V)
247 ssexg 5265 . . . . . . . . . . . . 13 ((𝑌 ⊆ ℂ ∧ ℂ ∈ V) → 𝑌 ∈ V)
24864, 100, 247sylancl 586 . . . . . . . . . . . 12 (𝜑𝑌 ∈ V)
249248adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑌 ∈ V)
250 eqid 2729 . . . . . . . . . . 11 (𝑋𝑌) = (𝑋𝑌)
251 eqidd 2730 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝑧𝑋) → (𝐹𝑧) = (𝐹𝑧))
252 eqidd 2730 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝑧𝑌) → (𝐺𝑧) = (𝐺𝑧))
253241, 243, 246, 249, 250, 251, 252ofval 7628 . . . . . . . . . 10 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝑧 ∈ (𝑋𝑌)) → ((𝐹f · 𝐺)‘𝑧) = ((𝐹𝑧) · (𝐺𝑧)))
25435, 253mpdan 687 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹f · 𝐺)‘𝑧) = ((𝐹𝑧) · (𝐺𝑧)))
255 eqidd 2730 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝐶𝑋) → (𝐹𝐶) = (𝐹𝐶))
256 eqidd 2730 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝐶𝑌) → (𝐺𝐶) = (𝐺𝐶))
257241, 243, 246, 249, 250, 255, 256ofval 7628 . . . . . . . . . 10 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝐶 ∈ (𝑋𝑌)) → ((𝐹f · 𝐺)‘𝐶) = ((𝐹𝐶) · (𝐺𝐶)))
258117, 257mpidan 689 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹f · 𝐺)‘𝐶) = ((𝐹𝐶) · (𝐺𝐶)))
259254, 258oveq12d 7371 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐹f · 𝐺)‘𝑧) − ((𝐹f · 𝐺)‘𝐶)) = (((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
260234, 239, 2593eqtr4d 2774 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) = (((𝐹f · 𝐺)‘𝑧) − ((𝐹f · 𝐺)‘𝐶)))
261260oveq1d 7368 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) / (𝑧𝐶)) = ((((𝐹f · 𝐺)‘𝑧) − ((𝐹f · 𝐺)‘𝐶)) / (𝑧𝐶)))
262222, 59, 229, 54div23d 11955 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) / (𝑧𝐶)) = ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)))
263226, 221, 229, 54div23d 11955 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) / (𝑧𝐶)) = ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))
264262, 263oveq12d 7371 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) / (𝑧𝐶)) + ((((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) / (𝑧𝐶))) = (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶))))
265230, 261, 2643eqtr3d 2772 . . . . 5 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹f · 𝐺)‘𝑧) − ((𝐹f · 𝐺)‘𝐶)) / (𝑧𝐶)) = (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶))))
266265mpteq2dva 5188 . . . 4 (𝜑 → (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹f · 𝐺)‘𝑧) − ((𝐹f · 𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))))
267266oveq1d 7368 . . 3 (𝜑 → ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹f · 𝐺)‘𝑧) − ((𝐹f · 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))) lim 𝐶))
268219, 267eleqtrrd 2831 . 2 (𝜑 → ((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹f · 𝐺)‘𝑧) − ((𝐹f · 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))
269 eqid 2729 . . 3 (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹f · 𝐺)‘𝑧) − ((𝐹f · 𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹f · 𝐺)‘𝑧) − ((𝐹f · 𝐺)‘𝐶)) / (𝑧𝐶)))
270 mulcl 11112 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
271270adantl 481 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
272271, 6, 13, 245, 248, 250off 7635 . . 3 (𝜑 → (𝐹f · 𝐺):(𝑋𝑌)⟶ℂ)
2732, 3, 269, 5, 272, 84eldv 25815 . 2 (𝜑 → (𝐶(𝑆 D (𝐹f · 𝐺))((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ∧ ((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹f · 𝐺)‘𝑧) − ((𝐹f · 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))))
27431, 268, 273mpbir2and 713 1 (𝜑𝐶(𝑆 D (𝐹f · 𝐺))((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905  {csn 4579  cop 4585   cuni 4861   class class class wbr 5095  cmpt 5176   × cxp 5621  dom cdm 5623  cres 5625  Rel wrel 5628   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  f cof 7615  cc 11026   + caddc 11031   · cmul 11033  cmin 11365   / cdiv 11795  t crest 17342  TopOpenctopn 17343  fldccnfld 21279  Topctop 22796  TopOnctopon 22813  intcnt 22920   Cn ccn 23127   CnP ccnp 23128   ×t ctx 23463  cnccncf 24785   lim climc 25779   D cdv 25780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-icc 13273  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-cn 23130  df-cnp 23131  df-tx 23465  df-hmeo 23658  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator