MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unitsscn Structured version   Visualization version   GIF version

Theorem unitsscn 13402
Description: The closed unit interval is a subset of the set of the complex numbers. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 12-Dec-2016.)
Assertion
Ref Expression
unitsscn (0[,]1) ⊆ ℂ

Proof of Theorem unitsscn
StepHypRef Expression
1 unitssre 13401 . 2 (0[,]1) ⊆ ℝ
2 ax-resscn 11070 . 2 ℝ ⊆ ℂ
31, 2sstri 3940 1 (0[,]1) ⊆ ℂ
Colors of variables: wff setvar class
Syntax hints:  wss 3898  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014  [,]cicc 13250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-i2m1 11081  ax-1ne0 11082  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-icc 13254
This theorem is referenced by:  iimulcn  24862  icchmeo  24866  reparphti  24924  iistmd  33936  xrge0iifhom  33971  xrge0iifmhm  33973  xrge0pluscn  33974  probdif  34454  cndprobin  34468  bayesth  34473  circlemeth  34674  cvxpconn  35307  cvxsconn  35308  resclunitintvd  42140  lcmineqlem2  42143
  Copyright terms: Public domain W3C validator