MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unitsscn Structured version   Visualization version   GIF version

Theorem unitsscn 13053
Description: The closed unit interval is a subset of the set of the complex numbers. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 12-Dec-2016.)
Assertion
Ref Expression
unitsscn (0[,]1) ⊆ ℂ

Proof of Theorem unitsscn
StepHypRef Expression
1 unitssre 13052 . 2 (0[,]1) ⊆ ℝ
2 ax-resscn 10751 . 2 ℝ ⊆ ℂ
31, 2sstri 3896 1 (0[,]1) ⊆ ℂ
Colors of variables: wff setvar class
Syntax hints:  wss 3853  (class class class)co 7191  cc 10692  cr 10693  0cc0 10694  1c1 10695  [,]cicc 12903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-i2m1 10762  ax-1ne0 10763  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-po 5453  df-so 5454  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-icc 12907
This theorem is referenced by:  iistmd  31520  xrge0iifhom  31555  xrge0iifmhm  31557  xrge0pluscn  31558  probdif  32053  cndprobin  32067  bayesth  32072  circlemeth  32286  resclunitintvd  39718  lcmineqlem2  39721
  Copyright terms: Public domain W3C validator