Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unitsscn | Structured version Visualization version GIF version |
Description: The closed unit interval is a subset of the set of the complex numbers. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 12-Dec-2016.) |
Ref | Expression |
---|---|
unitsscn | ⊢ (0[,]1) ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitssre 13304 | . 2 ⊢ (0[,]1) ⊆ ℝ | |
2 | ax-resscn 11001 | . 2 ⊢ ℝ ⊆ ℂ | |
3 | 1, 2 | sstri 3940 | 1 ⊢ (0[,]1) ⊆ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3897 (class class class)co 7315 ℂcc 10942 ℝcr 10943 0cc0 10944 1c1 10945 [,]cicc 13155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-i2m1 11012 ax-1ne0 11013 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-po 5521 df-so 5522 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7318 df-oprab 7319 df-mpo 7320 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-icc 13159 |
This theorem is referenced by: iistmd 31958 xrge0iifhom 31993 xrge0iifmhm 31995 xrge0pluscn 31996 probdif 32493 cndprobin 32507 bayesth 32512 circlemeth 32726 resclunitintvd 40240 lcmineqlem2 40243 |
Copyright terms: Public domain | W3C validator |