MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmfi Structured version   Visualization version   GIF version

Theorem dmfi 9327
Description: The domain of a finite set is finite. (Contributed by Mario Carneiro, 24-Sep-2013.)
Assertion
Ref Expression
dmfi (𝐴 ∈ Fin → dom 𝐴 ∈ Fin)

Proof of Theorem dmfi
StepHypRef Expression
1 fidomdm 9326 . 2 (𝐴 ∈ Fin → dom 𝐴𝐴)
2 domfi 9189 . 2 ((𝐴 ∈ Fin ∧ dom 𝐴𝐴) → dom 𝐴 ∈ Fin)
31, 2mpdan 684 1 (𝐴 ∈ Fin → dom 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098   class class class wbr 5139  dom cdm 5667  cdom 8934  Fincfn 8936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-om 7850  df-1st 7969  df-2nd 7970  df-1o 8462  df-er 8700  df-en 8937  df-dom 8938  df-fin 8940
This theorem is referenced by:  fundmfibi  9328  residfi  9330  rnfi  9332  hashfun  14395  hashreshashfun  14397  psgnprfval  19433  gsum2dlem2  19883  gsum2d  19884  tsmsxp  23983  numedglnl  28876  vtxdginducedm1fi  29273  finsumvtxdg2ssteplem2  29275  finsumvtxdg2ssteplem4  29277  finsumvtxdg2sstep  29278  vtxdgoddnumeven  29282  relfi  32305  fedgmullem2  33197  esum2d  33583  etransclem27  45487
  Copyright terms: Public domain W3C validator