| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmfi | Structured version Visualization version GIF version | ||
| Description: The domain of a finite set is finite. (Contributed by Mario Carneiro, 24-Sep-2013.) |
| Ref | Expression |
|---|---|
| dmfi | ⊢ (𝐴 ∈ Fin → dom 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fidomdm 9344 | . 2 ⊢ (𝐴 ∈ Fin → dom 𝐴 ≼ 𝐴) | |
| 2 | domfi 9201 | . 2 ⊢ ((𝐴 ∈ Fin ∧ dom 𝐴 ≼ 𝐴) → dom 𝐴 ∈ Fin) | |
| 3 | 1, 2 | mpdan 687 | 1 ⊢ (𝐴 ∈ Fin → dom 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5119 dom cdm 5654 ≼ cdom 8955 Fincfn 8957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-om 7860 df-1st 7986 df-2nd 7987 df-1o 8478 df-en 8958 df-dom 8959 df-fin 8961 |
| This theorem is referenced by: fundmfibi 9346 residfi 9348 rnfi 9350 hashfun 14453 hashreshashfun 14455 psgnprfval 19500 gsum2dlem2 19950 gsum2d 19951 tsmsxp 24091 numedglnl 29069 vtxdginducedm1fi 29470 finsumvtxdg2ssteplem2 29472 finsumvtxdg2ssteplem4 29474 finsumvtxdg2sstep 29475 vtxdgoddnumeven 29479 relfi 32529 gsumfs2d 32995 fedgmullem2 33616 esum2d 34070 imadomfi 41961 etransclem27 46238 |
| Copyright terms: Public domain | W3C validator |