Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmfi | Structured version Visualization version GIF version |
Description: The domain of a finite set is finite. (Contributed by Mario Carneiro, 24-Sep-2013.) |
Ref | Expression |
---|---|
dmfi | ⊢ (𝐴 ∈ Fin → dom 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fidomdm 8847 | . 2 ⊢ (𝐴 ∈ Fin → dom 𝐴 ≼ 𝐴) | |
2 | domfi 8789 | . 2 ⊢ ((𝐴 ∈ Fin ∧ dom 𝐴 ≼ 𝐴) → dom 𝐴 ∈ Fin) | |
3 | 1, 2 | mpdan 686 | 1 ⊢ (𝐴 ∈ Fin → dom 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5036 dom cdm 5528 ≼ cdom 8538 Fincfn 8540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-om 7586 df-1st 7699 df-2nd 7700 df-1o 8118 df-er 8305 df-en 8541 df-dom 8542 df-fin 8544 |
This theorem is referenced by: fundmfibi 8849 residfi 8851 rnfi 8853 hashfun 13861 hashreshashfun 13863 psgnprfval 18729 gsum2dlem2 19172 gsum2d 19173 tsmsxp 22868 numedglnl 27049 vtxdginducedm1fi 27446 finsumvtxdg2ssteplem2 27448 finsumvtxdg2ssteplem4 27450 finsumvtxdg2sstep 27451 vtxdgoddnumeven 27455 relfi 30476 fedgmullem2 31244 esum2d 31592 etransclem27 43304 |
Copyright terms: Public domain | W3C validator |