MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmfi Structured version   Visualization version   GIF version

Theorem dmfi 9219
Description: The domain of a finite set is finite. (Contributed by Mario Carneiro, 24-Sep-2013.)
Assertion
Ref Expression
dmfi (𝐴 ∈ Fin → dom 𝐴 ∈ Fin)

Proof of Theorem dmfi
StepHypRef Expression
1 fidomdm 9218 . 2 (𝐴 ∈ Fin → dom 𝐴𝐴)
2 domfi 9098 . 2 ((𝐴 ∈ Fin ∧ dom 𝐴𝐴) → dom 𝐴 ∈ Fin)
31, 2mpdan 687 1 (𝐴 ∈ Fin → dom 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111   class class class wbr 5089  dom cdm 5614  cdom 8867  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-en 8870  df-dom 8871  df-fin 8873
This theorem is referenced by:  fundmfibi  9220  residfi  9222  rnfi  9224  hashfun  14344  hashreshashfun  14346  psgnprfval  19433  gsum2dlem2  19883  gsum2d  19884  tsmsxp  24070  numedglnl  29122  vtxdginducedm1fi  29523  finsumvtxdg2ssteplem2  29525  finsumvtxdg2ssteplem4  29527  finsumvtxdg2sstep  29528  vtxdgoddnumeven  29532  relfi  32582  gsumfs2d  33035  fedgmullem2  33643  esum2d  34106  imadomfi  42043  etransclem27  46307
  Copyright terms: Public domain W3C validator