| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmfi | Structured version Visualization version GIF version | ||
| Description: The domain of a finite set is finite. (Contributed by Mario Carneiro, 24-Sep-2013.) |
| Ref | Expression |
|---|---|
| dmfi | ⊢ (𝐴 ∈ Fin → dom 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fidomdm 9292 | . 2 ⊢ (𝐴 ∈ Fin → dom 𝐴 ≼ 𝐴) | |
| 2 | domfi 9159 | . 2 ⊢ ((𝐴 ∈ Fin ∧ dom 𝐴 ≼ 𝐴) → dom 𝐴 ∈ Fin) | |
| 3 | 1, 2 | mpdan 687 | 1 ⊢ (𝐴 ∈ Fin → dom 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5110 dom cdm 5641 ≼ cdom 8919 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1st 7971 df-2nd 7972 df-1o 8437 df-en 8922 df-dom 8923 df-fin 8925 |
| This theorem is referenced by: fundmfibi 9294 residfi 9296 rnfi 9298 hashfun 14409 hashreshashfun 14411 psgnprfval 19458 gsum2dlem2 19908 gsum2d 19909 tsmsxp 24049 numedglnl 29078 vtxdginducedm1fi 29479 finsumvtxdg2ssteplem2 29481 finsumvtxdg2ssteplem4 29483 finsumvtxdg2sstep 29484 vtxdgoddnumeven 29488 relfi 32538 gsumfs2d 33002 fedgmullem2 33633 esum2d 34090 imadomfi 41997 etransclem27 46266 |
| Copyright terms: Public domain | W3C validator |