| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmfi | Structured version Visualization version GIF version | ||
| Description: The domain of a finite set is finite. (Contributed by Mario Carneiro, 24-Sep-2013.) |
| Ref | Expression |
|---|---|
| dmfi | ⊢ (𝐴 ∈ Fin → dom 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fidomdm 9261 | . 2 ⊢ (𝐴 ∈ Fin → dom 𝐴 ≼ 𝐴) | |
| 2 | domfi 9130 | . 2 ⊢ ((𝐴 ∈ Fin ∧ dom 𝐴 ≼ 𝐴) → dom 𝐴 ∈ Fin) | |
| 3 | 1, 2 | mpdan 687 | 1 ⊢ (𝐴 ∈ Fin → dom 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5102 dom cdm 5631 ≼ cdom 8893 Fincfn 8895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-om 7823 df-1st 7947 df-2nd 7948 df-1o 8411 df-en 8896 df-dom 8897 df-fin 8899 |
| This theorem is referenced by: fundmfibi 9263 residfi 9265 rnfi 9267 hashfun 14378 hashreshashfun 14380 psgnprfval 19427 gsum2dlem2 19877 gsum2d 19878 tsmsxp 24018 numedglnl 29047 vtxdginducedm1fi 29448 finsumvtxdg2ssteplem2 29450 finsumvtxdg2ssteplem4 29452 finsumvtxdg2sstep 29453 vtxdgoddnumeven 29457 relfi 32504 gsumfs2d 32968 fedgmullem2 33599 esum2d 34056 imadomfi 41963 etransclem27 46232 |
| Copyright terms: Public domain | W3C validator |