MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmfi Structured version   Visualization version   GIF version

Theorem dmfi 9373
Description: The domain of a finite set is finite. (Contributed by Mario Carneiro, 24-Sep-2013.)
Assertion
Ref Expression
dmfi (𝐴 ∈ Fin → dom 𝐴 ∈ Fin)

Proof of Theorem dmfi
StepHypRef Expression
1 fidomdm 9372 . 2 (𝐴 ∈ Fin → dom 𝐴𝐴)
2 domfi 9227 . 2 ((𝐴 ∈ Fin ∧ dom 𝐴𝐴) → dom 𝐴 ∈ Fin)
31, 2mpdan 687 1 (𝐴 ∈ Fin → dom 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   class class class wbr 5148  dom cdm 5689  cdom 8982  Fincfn 8984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1st 8013  df-2nd 8014  df-1o 8505  df-en 8985  df-dom 8986  df-fin 8988
This theorem is referenced by:  fundmfibi  9374  residfi  9376  rnfi  9378  hashfun  14473  hashreshashfun  14475  psgnprfval  19554  gsum2dlem2  20004  gsum2d  20005  tsmsxp  24179  numedglnl  29176  vtxdginducedm1fi  29577  finsumvtxdg2ssteplem2  29579  finsumvtxdg2ssteplem4  29581  finsumvtxdg2sstep  29582  vtxdgoddnumeven  29586  relfi  32622  gsumfs2d  33041  fedgmullem2  33658  esum2d  34074  imadomfi  41984  etransclem27  46217
  Copyright terms: Public domain W3C validator