Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrvfn Structured version   Visualization version   GIF version

Theorem rrvfn 34065
Description: A real-valued random variable is a function over the universe. (Contributed by Thierry Arnoux, 25-Jan-2017.)
Hypotheses
Ref Expression
isrrvv.1 (πœ‘ β†’ 𝑃 ∈ Prob)
rrvvf.1 (πœ‘ β†’ 𝑋 ∈ (rRndVarβ€˜π‘ƒ))
Assertion
Ref Expression
rrvfn (πœ‘ β†’ 𝑋 Fn βˆͺ dom 𝑃)

Proof of Theorem rrvfn
StepHypRef Expression
1 isrrvv.1 . . 3 (πœ‘ β†’ 𝑃 ∈ Prob)
2 rrvvf.1 . . 3 (πœ‘ β†’ 𝑋 ∈ (rRndVarβ€˜π‘ƒ))
31, 2rrvvf 34064 . 2 (πœ‘ β†’ 𝑋:βˆͺ dom π‘ƒβŸΆβ„)
43ffnd 6723 1 (πœ‘ β†’ 𝑋 Fn βˆͺ dom 𝑃)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2099  βˆͺ cuni 4908  dom cdm 5678   Fn wfn 6543  β€˜cfv 6548  β„cr 11137  Probcprb 34027  rRndVarcrrv 34060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-pre-lttri 11212  ax-pre-lttrn 11213
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-er 8724  df-map 8846  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-ioo 13360  df-topgen 17424  df-top 22795  df-bases 22848  df-esum 33647  df-siga 33728  df-sigagen 33758  df-brsiga 33801  df-meas 33815  df-mbfm 33869  df-prob 34028  df-rrv 34061
This theorem is referenced by:  elorrvc  34083
  Copyright terms: Public domain W3C validator