Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrvdm Structured version   Visualization version   GIF version

Theorem rrvdm 31054
Description: The domain of a random variable is the universe. (Contributed by Thierry Arnoux, 25-Jan-2017.)
Hypotheses
Ref Expression
isrrvv.1 (𝜑𝑃 ∈ Prob)
rrvvf.1 (𝜑𝑋 ∈ (rRndVar‘𝑃))
Assertion
Ref Expression
rrvdm (𝜑 → dom 𝑋 = dom 𝑃)

Proof of Theorem rrvdm
StepHypRef Expression
1 isrrvv.1 . . 3 (𝜑𝑃 ∈ Prob)
2 rrvvf.1 . . 3 (𝜑𝑋 ∈ (rRndVar‘𝑃))
31, 2rrvvf 31052 . 2 (𝜑𝑋: dom 𝑃⟶ℝ)
43fdmd 6287 1 (𝜑 → dom 𝑋 = dom 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166   cuni 4658  dom cdm 5342  cfv 6123  cr 10251  Probcprb 31015  rRndVarcrrv 31048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-pre-lttri 10326  ax-pre-lttrn 10327
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-po 5263  df-so 5264  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-1st 7428  df-2nd 7429  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-ioo 12467  df-topgen 16457  df-top 21069  df-bases 21121  df-esum 30635  df-siga 30716  df-sigagen 30747  df-brsiga 30790  df-meas 30804  df-mbfm 30858  df-prob 31016  df-rrv 31049
This theorem is referenced by:  rrvf2  31056  rrvdmss  31057  elorrvc  31071  dstfrvel  31081
  Copyright terms: Public domain W3C validator