![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrvvf | Structured version Visualization version GIF version |
Description: A real-valued random variable is a function. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
Ref | Expression |
---|---|
isrrvv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
rrvvf.1 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
Ref | Expression |
---|---|
rrvvf | ⊢ (𝜑 → 𝑋:∪ dom 𝑃⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrvvf.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
2 | isrrvv.1 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
3 | 2 | isrrvv 31051 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
4 | 1, 3 | mpbid 224 | . 2 ⊢ (𝜑 → (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃)) |
5 | 4 | simpld 490 | 1 ⊢ (𝜑 → 𝑋:∪ dom 𝑃⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2166 ∀wral 3117 ∪ cuni 4658 ◡ccnv 5341 dom cdm 5342 “ cima 5345 ⟶wf 6119 ‘cfv 6123 ℝcr 10251 𝔅ℝcbrsiga 30789 Probcprb 31015 rRndVarcrrv 31048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-pre-lttri 10326 ax-pre-lttrn 10327 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-po 5263 df-so 5264 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-1st 7428 df-2nd 7429 df-er 8009 df-map 8124 df-en 8223 df-dom 8224 df-sdom 8225 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-ioo 12467 df-topgen 16457 df-top 21069 df-bases 21121 df-esum 30635 df-siga 30716 df-sigagen 30747 df-brsiga 30790 df-meas 30804 df-mbfm 30858 df-prob 31016 df-rrv 31049 |
This theorem is referenced by: rrvfn 31053 rrvdm 31054 rrvrnss 31055 rrvf2 31056 rrvadd 31060 rrvmulc 31061 dstrvprob 31079 dstfrvel 31081 dstfrvunirn 31082 |
Copyright terms: Public domain | W3C validator |