Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrvvf Structured version   Visualization version   GIF version

Theorem rrvvf 31720
Description: A real-valued random variable is a function. (Contributed by Thierry Arnoux, 25-Jan-2017.)
Hypotheses
Ref Expression
isrrvv.1 (𝜑𝑃 ∈ Prob)
rrvvf.1 (𝜑𝑋 ∈ (rRndVar‘𝑃))
Assertion
Ref Expression
rrvvf (𝜑𝑋: dom 𝑃⟶ℝ)

Proof of Theorem rrvvf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rrvvf.1 . . 3 (𝜑𝑋 ∈ (rRndVar‘𝑃))
2 isrrvv.1 . . . 4 (𝜑𝑃 ∈ Prob)
32isrrvv 31719 . . 3 (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋: dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃)))
41, 3mpbid 235 . 2 (𝜑 → (𝑋: dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃))
54simpld 498 1 (𝜑𝑋: dom 𝑃⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2115  wral 3132   cuni 4819  ccnv 5535  dom cdm 5536  cima 5539  wf 6332  cfv 6336  cr 10521  𝔅cbrsiga 31458  Probcprb 31683  rRndVarcrrv 31716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-pre-lttri 10596  ax-pre-lttrn 10597
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-po 5455  df-so 5456  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ov 7141  df-oprab 7142  df-mpo 7143  df-1st 7672  df-2nd 7673  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-ioo 12728  df-topgen 16706  df-top 21488  df-bases 21540  df-esum 31305  df-siga 31386  df-sigagen 31416  df-brsiga 31459  df-meas 31473  df-mbfm 31527  df-prob 31684  df-rrv 31717
This theorem is referenced by:  rrvfn  31721  rrvdm  31722  rrvrnss  31723  rrvf2  31724  rrvadd  31728  rrvmulc  31729  dstrvprob  31747  dstfrvel  31749  dstfrvunirn  31750
  Copyright terms: Public domain W3C validator