Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrltled | Structured version Visualization version GIF version |
Description: 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle 12865. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
xrltled.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrltled.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrltled.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
xrltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltled.altb | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | xrltled.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
3 | xrltled.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
4 | xrltle 12865 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
5 | 2, 3, 4 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5078 ℝ*cxr 10992 < clt 10993 ≤ cle 10994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-pre-lttri 10929 ax-pre-lttrn 10930 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 |
This theorem is referenced by: qextltlem 12918 ioounsn 13191 snunioc 13194 pcadd2 16572 xblss2ps 23535 xblss2 23536 blhalf 23539 blssps 23558 blss 23559 blcvx 23942 tgqioo 23944 metdcnlem 23980 ioorcl2 24717 volivth 24752 itg2monolem2 24897 itg2cnlem2 24908 dvferm1lem 25129 dvferm2lem 25131 dvferm 25133 dvivthlem1 25153 lhop2 25160 radcnvle 25560 difioo 31082 heicant 35791 ftc1anclem7 35835 supxrgere 42826 suplesup 42832 infrpge 42844 xralrple2 42847 xrralrecnnle 42876 xrralrecnnge 42884 supxrunb3 42893 unb2ltle 42909 xrpnf 42980 snunioo1 43004 iccdifprioo 43008 iccdificc 43031 lptioo1 43127 limsupub 43199 limsuppnflem 43205 limsupre3lem 43227 xlimmnfvlem1 43327 xlimpnfvlem1 43331 fourierdlem46 43647 fourierdlem48 43649 fourierdlem49 43650 fourierdlem74 43675 fourierdlem75 43676 fourierdlem113 43714 ioorrnopnxrlem 43801 salexct2 43832 sge0iunmptlemre 43907 sge0rpcpnf 43913 sge0xaddlem1 43925 meaiuninc3v 43976 ovnsubaddlem1 44062 hoidmv1le 44086 hoidmvlelem5 44091 ovolval4lem1 44141 ovolval5lem1 44144 pimltmnf2 44189 pimgtpnf2 44195 preimageiingt 44208 preimaleiinlt 44209 iccpartleu 44832 iccpartgel 44833 |
Copyright terms: Public domain | W3C validator |