![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrltled | Structured version Visualization version GIF version |
Description: 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle 12229. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
xrltled.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrltled.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrltled.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
xrltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltled.altb | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | xrltled.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
3 | xrltled.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
4 | xrltle 12229 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
5 | 2, 3, 4 | syl2anc 580 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 class class class wbr 4843 ℝ*cxr 10362 < clt 10363 ≤ cle 10364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-pre-lttri 10298 ax-pre-lttrn 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 |
This theorem is referenced by: qextltlem 12282 ioounsn 12550 snunioc 12554 pcadd2 15927 xblss2ps 22534 xblss2 22535 blhalf 22538 blssps 22557 blss 22558 blcvx 22929 tgqioo 22931 metdcnlem 22967 ioorcl2 23680 volivth 23715 itg2monolem2 23859 itg2cnlem2 23870 dvferm1lem 24088 dvferm2lem 24090 dvferm 24092 dvivthlem1 24112 lhop2 24119 radcnvle 24515 difioo 30062 heicant 33933 ftc1anclem7 33979 supxrgere 40293 suplesup 40299 infrpge 40311 xralrple2 40314 xrralrecnnle 40346 xrralrecnnge 40356 supxrunb3 40366 unb2ltle 40385 xrpnf 40459 snunioo1 40483 iccdifprioo 40487 iccdificc 40510 lptioo1 40608 limsupub 40680 limsuppnflem 40686 limsupre3lem 40708 xlimmnfvlem1 40802 xlimpnfvlem1 40806 fourierdlem46 41112 fourierdlem48 41114 fourierdlem49 41115 fourierdlem74 41140 fourierdlem75 41141 fourierdlem113 41179 ioorrnopnxrlem 41269 salexct2 41300 sge0iunmptlemre 41375 sge0rpcpnf 41381 sge0xaddlem1 41393 meaiuninc3v 41444 ovnsubaddlem1 41530 hoidmv1le 41554 hoidmvlelem5 41559 ovolval4lem1 41609 ovolval5lem1 41612 pimltmnf2 41657 pimgtpnf2 41663 preimageiingt 41676 preimaleiinlt 41677 iccpartleu 42204 iccpartgel 42205 |
Copyright terms: Public domain | W3C validator |