| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrltled | Structured version Visualization version GIF version | ||
| Description: 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle 13069. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| xrltled.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrltled.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrltled.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
| Ref | Expression |
|---|---|
| xrltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltled.altb | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | xrltled.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 3 | xrltled.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 4 | xrltle 13069 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
| 5 | 2, 3, 4 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
| 6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5095 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 |
| This theorem is referenced by: qextltlem 13122 ioounsn 13398 snunioc 13401 pcadd2 16820 xblss2ps 24305 xblss2 24306 blhalf 24309 blssps 24328 blss 24329 blcvx 24702 tgqioo 24704 metdcnlem 24741 ioorcl2 25489 volivth 25524 itg2monolem2 25668 itg2cnlem2 25679 dvferm1lem 25904 dvferm2lem 25906 dvferm 25908 dvivthlem1 25929 lhop2 25936 radcnvle 26345 difioo 32738 heicant 37634 ftc1anclem7 37678 supxrgere 45313 suplesup 45319 infrpge 45331 xralrple2 45334 xrralrecnnle 45363 xrralrecnnge 45370 supxrunb3 45379 unb2ltle 45395 xrpnf 45465 snunioo1 45494 iccdifprioo 45498 iccdificc 45521 lptioo1 45614 limsupub 45686 limsuppnflem 45692 limsupre3lem 45714 xlimmnfvlem1 45814 xlimpnfvlem1 45818 fourierdlem46 46134 fourierdlem48 46136 fourierdlem49 46137 fourierdlem74 46162 fourierdlem75 46163 fourierdlem113 46201 ioorrnopnxrlem 46288 salexct2 46321 sge0iunmptlemre 46397 sge0rpcpnf 46403 sge0xaddlem1 46415 meaiuninc3v 46466 ovnsubaddlem1 46552 hoidmv1le 46576 hoidmvlelem5 46581 ovolval4lem1 46631 ovolval5lem1 46634 preimageiingt 46702 preimaleiinlt 46703 fsupdm 46824 finfdm 46828 iccpartleu 47413 iccpartgel 47414 |
| Copyright terms: Public domain | W3C validator |