![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrltled | Structured version Visualization version GIF version |
Description: 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle 13211. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
xrltled.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrltled.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrltled.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
xrltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltled.altb | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | xrltled.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
3 | xrltled.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
4 | xrltle 13211 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
5 | 2, 3, 4 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5166 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 |
This theorem is referenced by: qextltlem 13264 ioounsn 13537 snunioc 13540 pcadd2 16937 xblss2ps 24432 xblss2 24433 blhalf 24436 blssps 24455 blss 24456 blcvx 24839 tgqioo 24841 metdcnlem 24877 ioorcl2 25626 volivth 25661 itg2monolem2 25806 itg2cnlem2 25817 dvferm1lem 26042 dvferm2lem 26044 dvferm 26046 dvivthlem1 26067 lhop2 26074 radcnvle 26481 difioo 32787 heicant 37615 ftc1anclem7 37659 supxrgere 45248 suplesup 45254 infrpge 45266 xralrple2 45269 xrralrecnnle 45298 xrralrecnnge 45305 supxrunb3 45314 unb2ltle 45330 xrpnf 45401 snunioo1 45430 iccdifprioo 45434 iccdificc 45457 lptioo1 45553 limsupub 45625 limsuppnflem 45631 limsupre3lem 45653 xlimmnfvlem1 45753 xlimpnfvlem1 45757 fourierdlem46 46073 fourierdlem48 46075 fourierdlem49 46076 fourierdlem74 46101 fourierdlem75 46102 fourierdlem113 46140 ioorrnopnxrlem 46227 salexct2 46260 sge0iunmptlemre 46336 sge0rpcpnf 46342 sge0xaddlem1 46354 meaiuninc3v 46405 ovnsubaddlem1 46491 hoidmv1le 46515 hoidmvlelem5 46520 ovolval4lem1 46570 ovolval5lem1 46573 preimageiingt 46641 preimaleiinlt 46642 fsupdm 46763 finfdm 46767 iccpartleu 47302 iccpartgel 47303 |
Copyright terms: Public domain | W3C validator |