![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrltled | Structured version Visualization version GIF version |
Description: 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle 13188. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
xrltled.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrltled.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrltled.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
xrltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltled.altb | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | xrltled.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
3 | xrltled.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
4 | xrltle 13188 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
5 | 2, 3, 4 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5148 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 |
This theorem is referenced by: qextltlem 13241 ioounsn 13514 snunioc 13517 pcadd2 16924 xblss2ps 24427 xblss2 24428 blhalf 24431 blssps 24450 blss 24451 blcvx 24834 tgqioo 24836 metdcnlem 24872 ioorcl2 25621 volivth 25656 itg2monolem2 25801 itg2cnlem2 25812 dvferm1lem 26037 dvferm2lem 26039 dvferm 26041 dvivthlem1 26062 lhop2 26069 radcnvle 26478 difioo 32791 heicant 37642 ftc1anclem7 37686 supxrgere 45283 suplesup 45289 infrpge 45301 xralrple2 45304 xrralrecnnle 45333 xrralrecnnge 45340 supxrunb3 45349 unb2ltle 45365 xrpnf 45436 snunioo1 45465 iccdifprioo 45469 iccdificc 45492 lptioo1 45588 limsupub 45660 limsuppnflem 45666 limsupre3lem 45688 xlimmnfvlem1 45788 xlimpnfvlem1 45792 fourierdlem46 46108 fourierdlem48 46110 fourierdlem49 46111 fourierdlem74 46136 fourierdlem75 46137 fourierdlem113 46175 ioorrnopnxrlem 46262 salexct2 46295 sge0iunmptlemre 46371 sge0rpcpnf 46377 sge0xaddlem1 46389 meaiuninc3v 46440 ovnsubaddlem1 46526 hoidmv1le 46550 hoidmvlelem5 46555 ovolval4lem1 46605 ovolval5lem1 46608 preimageiingt 46676 preimaleiinlt 46677 fsupdm 46798 finfdm 46802 iccpartleu 47353 iccpartgel 47354 |
Copyright terms: Public domain | W3C validator |