| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrltled | Structured version Visualization version GIF version | ||
| Description: 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle 13109. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| xrltled.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrltled.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrltled.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
| Ref | Expression |
|---|---|
| xrltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltled.altb | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | xrltled.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 3 | xrltled.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 4 | xrltle 13109 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
| 5 | 2, 3, 4 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
| 6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5107 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 |
| This theorem is referenced by: qextltlem 13162 ioounsn 13438 snunioc 13441 pcadd2 16861 xblss2ps 24289 xblss2 24290 blhalf 24293 blssps 24312 blss 24313 blcvx 24686 tgqioo 24688 metdcnlem 24725 ioorcl2 25473 volivth 25508 itg2monolem2 25652 itg2cnlem2 25663 dvferm1lem 25888 dvferm2lem 25890 dvferm 25892 dvivthlem1 25913 lhop2 25920 radcnvle 26329 difioo 32705 heicant 37649 ftc1anclem7 37693 supxrgere 45329 suplesup 45335 infrpge 45347 xralrple2 45350 xrralrecnnle 45379 xrralrecnnge 45386 supxrunb3 45395 unb2ltle 45411 xrpnf 45481 snunioo1 45510 iccdifprioo 45514 iccdificc 45537 lptioo1 45630 limsupub 45702 limsuppnflem 45708 limsupre3lem 45730 xlimmnfvlem1 45830 xlimpnfvlem1 45834 fourierdlem46 46150 fourierdlem48 46152 fourierdlem49 46153 fourierdlem74 46178 fourierdlem75 46179 fourierdlem113 46217 ioorrnopnxrlem 46304 salexct2 46337 sge0iunmptlemre 46413 sge0rpcpnf 46419 sge0xaddlem1 46431 meaiuninc3v 46482 ovnsubaddlem1 46568 hoidmv1le 46592 hoidmvlelem5 46597 ovolval4lem1 46647 ovolval5lem1 46650 preimageiingt 46718 preimaleiinlt 46719 fsupdm 46840 finfdm 46844 iccpartleu 47429 iccpartgel 47430 |
| Copyright terms: Public domain | W3C validator |