| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrltled | Structured version Visualization version GIF version | ||
| Description: 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle 13050. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| xrltled.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrltled.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrltled.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
| Ref | Expression |
|---|---|
| xrltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltled.altb | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | xrltled.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 3 | xrltled.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 4 | xrltle 13050 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
| 5 | 2, 3, 4 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
| 6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 class class class wbr 5093 ℝ*cxr 11152 < clt 11153 ≤ cle 11154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 |
| This theorem is referenced by: qextltlem 13103 ioounsn 13379 snunioc 13382 pcadd2 16804 xblss2ps 24317 xblss2 24318 blhalf 24321 blssps 24340 blss 24341 blcvx 24714 tgqioo 24716 metdcnlem 24753 ioorcl2 25501 volivth 25536 itg2monolem2 25680 itg2cnlem2 25691 dvferm1lem 25916 dvferm2lem 25918 dvferm 25920 dvivthlem1 25941 lhop2 25948 radcnvle 26357 difioo 32769 heicant 37715 ftc1anclem7 37759 supxrgere 45456 suplesup 45462 infrpge 45474 xralrple2 45477 xrralrecnnle 45505 xrralrecnnge 45512 supxrunb3 45521 unb2ltle 45537 xrpnf 45607 snunioo1 45636 iccdifprioo 45640 iccdificc 45663 lptioo1 45756 limsupub 45826 limsuppnflem 45832 limsupre3lem 45854 xlimmnfvlem1 45954 xlimpnfvlem1 45958 fourierdlem46 46274 fourierdlem48 46276 fourierdlem49 46277 fourierdlem74 46302 fourierdlem75 46303 fourierdlem113 46341 ioorrnopnxrlem 46428 salexct2 46461 sge0iunmptlemre 46537 sge0rpcpnf 46543 sge0xaddlem1 46555 meaiuninc3v 46606 ovnsubaddlem1 46692 hoidmv1le 46716 hoidmvlelem5 46721 ovolval4lem1 46771 ovolval5lem1 46774 preimageiingt 46842 preimaleiinlt 46843 fsupdm 46964 finfdm 46968 iccpartleu 47552 iccpartgel 47553 |
| Copyright terms: Public domain | W3C validator |