| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrltled | Structured version Visualization version GIF version | ||
| Description: 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle 13045. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| xrltled.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrltled.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrltled.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
| Ref | Expression |
|---|---|
| xrltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltled.altb | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | xrltled.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 3 | xrltled.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 4 | xrltle 13045 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
| 5 | 2, 3, 4 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
| 6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5091 ℝ*cxr 11142 < clt 11143 ≤ cle 11144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-pre-lttri 11077 ax-pre-lttrn 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 |
| This theorem is referenced by: qextltlem 13098 ioounsn 13374 snunioc 13377 pcadd2 16799 xblss2ps 24314 xblss2 24315 blhalf 24318 blssps 24337 blss 24338 blcvx 24711 tgqioo 24713 metdcnlem 24750 ioorcl2 25498 volivth 25533 itg2monolem2 25677 itg2cnlem2 25688 dvferm1lem 25913 dvferm2lem 25915 dvferm 25917 dvivthlem1 25938 lhop2 25945 radcnvle 26354 difioo 32760 heicant 37694 ftc1anclem7 37738 supxrgere 45371 suplesup 45377 infrpge 45389 xralrple2 45392 xrralrecnnle 45420 xrralrecnnge 45427 supxrunb3 45436 unb2ltle 45452 xrpnf 45522 snunioo1 45551 iccdifprioo 45555 iccdificc 45578 lptioo1 45671 limsupub 45741 limsuppnflem 45747 limsupre3lem 45769 xlimmnfvlem1 45869 xlimpnfvlem1 45873 fourierdlem46 46189 fourierdlem48 46191 fourierdlem49 46192 fourierdlem74 46217 fourierdlem75 46218 fourierdlem113 46256 ioorrnopnxrlem 46343 salexct2 46376 sge0iunmptlemre 46452 sge0rpcpnf 46458 sge0xaddlem1 46470 meaiuninc3v 46521 ovnsubaddlem1 46607 hoidmv1le 46631 hoidmvlelem5 46636 ovolval4lem1 46686 ovolval5lem1 46689 preimageiingt 46757 preimaleiinlt 46758 fsupdm 46879 finfdm 46883 iccpartleu 47458 iccpartgel 47459 |
| Copyright terms: Public domain | W3C validator |