![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrltled | Structured version Visualization version GIF version |
Description: 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle 13154. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
xrltled.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrltled.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrltled.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
xrltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltled.altb | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | xrltled.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
3 | xrltled.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
4 | xrltle 13154 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
5 | 2, 3, 4 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 class class class wbr 5142 ℝ*cxr 11271 < clt 11272 ≤ cle 11273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-pre-lttri 11206 ax-pre-lttrn 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 |
This theorem is referenced by: qextltlem 13207 ioounsn 13480 snunioc 13483 pcadd2 16852 xblss2ps 24300 xblss2 24301 blhalf 24304 blssps 24323 blss 24324 blcvx 24707 tgqioo 24709 metdcnlem 24745 ioorcl2 25494 volivth 25529 itg2monolem2 25674 itg2cnlem2 25685 dvferm1lem 25909 dvferm2lem 25911 dvferm 25913 dvivthlem1 25934 lhop2 25941 radcnvle 26349 difioo 32544 heicant 37122 ftc1anclem7 37166 supxrgere 44709 suplesup 44715 infrpge 44727 xralrple2 44730 xrralrecnnle 44759 xrralrecnnge 44766 supxrunb3 44775 unb2ltle 44791 xrpnf 44862 snunioo1 44891 iccdifprioo 44895 iccdificc 44918 lptioo1 45014 limsupub 45086 limsuppnflem 45092 limsupre3lem 45114 xlimmnfvlem1 45214 xlimpnfvlem1 45218 fourierdlem46 45534 fourierdlem48 45536 fourierdlem49 45537 fourierdlem74 45562 fourierdlem75 45563 fourierdlem113 45601 ioorrnopnxrlem 45688 salexct2 45721 sge0iunmptlemre 45797 sge0rpcpnf 45803 sge0xaddlem1 45815 meaiuninc3v 45866 ovnsubaddlem1 45952 hoidmv1le 45976 hoidmvlelem5 45981 ovolval4lem1 46031 ovolval5lem1 46034 preimageiingt 46102 preimaleiinlt 46103 fsupdm 46224 finfdm 46228 iccpartleu 46762 iccpartgel 46763 |
Copyright terms: Public domain | W3C validator |