Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrltled | Structured version Visualization version GIF version |
Description: 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle 12933. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
xrltled.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrltled.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrltled.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
xrltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltled.altb | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | xrltled.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
3 | xrltled.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
4 | xrltle 12933 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
5 | 2, 3, 4 | syl2anc 585 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 class class class wbr 5081 ℝ*cxr 11058 < clt 11059 ≤ cle 11060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-pre-lttri 10995 ax-pre-lttrn 10996 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 |
This theorem is referenced by: qextltlem 12986 ioounsn 13259 snunioc 13262 pcadd2 16640 xblss2ps 23603 xblss2 23604 blhalf 23607 blssps 23626 blss 23627 blcvx 24010 tgqioo 24012 metdcnlem 24048 ioorcl2 24785 volivth 24820 itg2monolem2 24965 itg2cnlem2 24976 dvferm1lem 25197 dvferm2lem 25199 dvferm 25201 dvivthlem1 25221 lhop2 25228 radcnvle 25628 difioo 31152 heicant 35860 ftc1anclem7 35904 supxrgere 43100 suplesup 43106 infrpge 43118 xralrple2 43121 xrralrecnnle 43150 xrralrecnnge 43158 supxrunb3 43167 unb2ltle 43183 xrpnf 43254 snunioo1 43279 iccdifprioo 43283 iccdificc 43306 lptioo1 43402 limsupub 43474 limsuppnflem 43480 limsupre3lem 43502 xlimmnfvlem1 43602 xlimpnfvlem1 43606 fourierdlem46 43922 fourierdlem48 43924 fourierdlem49 43925 fourierdlem74 43950 fourierdlem75 43951 fourierdlem113 43989 ioorrnopnxrlem 44076 salexct2 44107 sge0iunmptlemre 44183 sge0rpcpnf 44189 sge0xaddlem1 44201 meaiuninc3v 44252 ovnsubaddlem1 44338 hoidmv1le 44362 hoidmvlelem5 44367 ovolval4lem1 44417 ovolval5lem1 44420 preimageiingt 44488 preimaleiinlt 44489 iccpartleu 45124 iccpartgel 45125 |
Copyright terms: Public domain | W3C validator |