| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrltled | Structured version Visualization version GIF version | ||
| Description: 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle 13116. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| xrltled.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrltled.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrltled.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
| Ref | Expression |
|---|---|
| xrltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltled.altb | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | xrltled.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 3 | xrltled.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 4 | xrltle 13116 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
| 5 | 2, 3, 4 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
| 6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5110 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 |
| This theorem is referenced by: qextltlem 13169 ioounsn 13445 snunioc 13448 pcadd2 16868 xblss2ps 24296 xblss2 24297 blhalf 24300 blssps 24319 blss 24320 blcvx 24693 tgqioo 24695 metdcnlem 24732 ioorcl2 25480 volivth 25515 itg2monolem2 25659 itg2cnlem2 25670 dvferm1lem 25895 dvferm2lem 25897 dvferm 25899 dvivthlem1 25920 lhop2 25927 radcnvle 26336 difioo 32712 heicant 37656 ftc1anclem7 37700 supxrgere 45336 suplesup 45342 infrpge 45354 xralrple2 45357 xrralrecnnle 45386 xrralrecnnge 45393 supxrunb3 45402 unb2ltle 45418 xrpnf 45488 snunioo1 45517 iccdifprioo 45521 iccdificc 45544 lptioo1 45637 limsupub 45709 limsuppnflem 45715 limsupre3lem 45737 xlimmnfvlem1 45837 xlimpnfvlem1 45841 fourierdlem46 46157 fourierdlem48 46159 fourierdlem49 46160 fourierdlem74 46185 fourierdlem75 46186 fourierdlem113 46224 ioorrnopnxrlem 46311 salexct2 46344 sge0iunmptlemre 46420 sge0rpcpnf 46426 sge0xaddlem1 46438 meaiuninc3v 46489 ovnsubaddlem1 46575 hoidmv1le 46599 hoidmvlelem5 46604 ovolval4lem1 46654 ovolval5lem1 46657 preimageiingt 46725 preimaleiinlt 46726 fsupdm 46847 finfdm 46851 iccpartleu 47433 iccpartgel 47434 |
| Copyright terms: Public domain | W3C validator |