Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrltled | Structured version Visualization version GIF version |
Description: 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle 12625. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
xrltled.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrltled.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrltled.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
xrltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltled.altb | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | xrltled.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
3 | xrltled.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
4 | xrltle 12625 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
5 | 2, 3, 4 | syl2anc 587 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2114 class class class wbr 5030 ℝ*cxr 10752 < clt 10753 ≤ cle 10754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-pre-lttri 10689 ax-pre-lttrn 10690 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-po 5442 df-so 5443 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 |
This theorem is referenced by: qextltlem 12678 ioounsn 12951 snunioc 12954 pcadd2 16326 xblss2ps 23154 xblss2 23155 blhalf 23158 blssps 23177 blss 23178 blcvx 23550 tgqioo 23552 metdcnlem 23588 ioorcl2 24324 volivth 24359 itg2monolem2 24504 itg2cnlem2 24515 dvferm1lem 24736 dvferm2lem 24738 dvferm 24740 dvivthlem1 24760 lhop2 24767 radcnvle 25167 difioo 30678 heicant 35435 ftc1anclem7 35479 supxrgere 42410 suplesup 42416 infrpge 42428 xralrple2 42431 xrralrecnnle 42460 xrralrecnnge 42468 supxrunb3 42477 unb2ltle 42493 xrpnf 42566 snunioo1 42590 iccdifprioo 42594 iccdificc 42617 lptioo1 42715 limsupub 42787 limsuppnflem 42793 limsupre3lem 42815 xlimmnfvlem1 42915 xlimpnfvlem1 42919 fourierdlem46 43235 fourierdlem48 43237 fourierdlem49 43238 fourierdlem74 43263 fourierdlem75 43264 fourierdlem113 43302 ioorrnopnxrlem 43389 salexct2 43420 sge0iunmptlemre 43495 sge0rpcpnf 43501 sge0xaddlem1 43513 meaiuninc3v 43564 ovnsubaddlem1 43650 hoidmv1le 43674 hoidmvlelem5 43679 ovolval4lem1 43729 ovolval5lem1 43732 pimltmnf2 43777 pimgtpnf2 43783 preimageiingt 43796 preimaleiinlt 43797 iccpartleu 44414 iccpartgel 44415 |
Copyright terms: Public domain | W3C validator |