MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmlss Structured version   Visualization version   GIF version

Theorem dsmmlss 21150
Description: The finite hull of a product of modules is additionally closed under scalar multiplication and thus is a linear subspace of the product. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmlss.i (𝜑𝐼𝑊)
dsmmlss.s (𝜑𝑆 ∈ Ring)
dsmmlss.r (𝜑𝑅:𝐼⟶LMod)
dsmmlss.k ((𝜑𝑥𝐼) → (Scalar‘(𝑅𝑥)) = 𝑆)
dsmmlss.p 𝑃 = (𝑆Xs𝑅)
dsmmlss.u 𝑈 = (LSubSp‘𝑃)
dsmmlss.h 𝐻 = (Base‘(𝑆m 𝑅))
Assertion
Ref Expression
dsmmlss (𝜑𝐻𝑈)
Distinct variable groups:   𝜑,𝑥   𝑥,𝑆   𝑥,𝑅   𝑥,𝐼   𝑥,𝑃   𝑥,𝐻
Allowed substitution hints:   𝑈(𝑥)   𝑊(𝑥)

Proof of Theorem dsmmlss
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dsmmlss.p . . 3 𝑃 = (𝑆Xs𝑅)
2 dsmmlss.h . . 3 𝐻 = (Base‘(𝑆m 𝑅))
3 dsmmlss.i . . 3 (𝜑𝐼𝑊)
4 dsmmlss.s . . 3 (𝜑𝑆 ∈ Ring)
5 dsmmlss.r . . . 4 (𝜑𝑅:𝐼⟶LMod)
6 lmodgrp 20329 . . . . 5 (𝑎 ∈ LMod → 𝑎 ∈ Grp)
76ssriv 3948 . . . 4 LMod ⊆ Grp
8 fss 6685 . . . 4 ((𝑅:𝐼⟶LMod ∧ LMod ⊆ Grp) → 𝑅:𝐼⟶Grp)
95, 7, 8sylancl 586 . . 3 (𝜑𝑅:𝐼⟶Grp)
101, 2, 3, 4, 9dsmmsubg 21149 . 2 (𝜑𝐻 ∈ (SubGrp‘𝑃))
11 dsmmlss.k . . . . . . 7 ((𝜑𝑥𝐼) → (Scalar‘(𝑅𝑥)) = 𝑆)
121, 4, 3, 5, 11prdslmodd 20430 . . . . . 6 (𝜑𝑃 ∈ LMod)
1312adantr 481 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑃 ∈ LMod)
14 simprl 769 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑎 ∈ (Base‘(Scalar‘𝑃)))
15 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑏𝐻)
16 eqid 2736 . . . . . . . . 9 (𝑆m 𝑅) = (𝑆m 𝑅)
17 eqid 2736 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑃)
185ffnd 6669 . . . . . . . . 9 (𝜑𝑅 Fn 𝐼)
191, 16, 17, 2, 3, 18dsmmelbas 21145 . . . . . . . 8 (𝜑 → (𝑏𝐻 ↔ (𝑏 ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)))
2019adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → (𝑏𝐻 ↔ (𝑏 ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)))
2115, 20mpbid 231 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → (𝑏 ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin))
2221simpld 495 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑏 ∈ (Base‘𝑃))
23 eqid 2736 . . . . . 6 (Scalar‘𝑃) = (Scalar‘𝑃)
24 eqid 2736 . . . . . 6 ( ·𝑠𝑃) = ( ·𝑠𝑃)
25 eqid 2736 . . . . . 6 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
2617, 23, 24, 25lmodvscl 20339 . . . . 5 ((𝑃 ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏 ∈ (Base‘𝑃)) → (𝑎( ·𝑠𝑃)𝑏) ∈ (Base‘𝑃))
2713, 14, 22, 26syl3anc 1371 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → (𝑎( ·𝑠𝑃)𝑏) ∈ (Base‘𝑃))
2821simprd 496 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)
29 eqid 2736 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
304ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑆 ∈ Ring)
313ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝐼𝑊)
3218ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑅 Fn 𝐼)
335, 3fexd 7177 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ V)
341, 4, 33prdssca 17338 . . . . . . . . . . . . . . . 16 (𝜑𝑆 = (Scalar‘𝑃))
3534fveq2d 6846 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝑆) = (Base‘(Scalar‘𝑃)))
3635eleq2d 2823 . . . . . . . . . . . . . 14 (𝜑 → (𝑎 ∈ (Base‘𝑆) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑃))))
3736biimpar 478 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (Base‘(Scalar‘𝑃))) → 𝑎 ∈ (Base‘𝑆))
3837adantrr 715 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑎 ∈ (Base‘𝑆))
3938adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑎 ∈ (Base‘𝑆))
4022adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑏 ∈ (Base‘𝑃))
41 simpr 485 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑥𝐼)
421, 17, 24, 29, 30, 31, 32, 39, 40, 41prdsvscafval 17362 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) = (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)))
4342adantrr 715 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ (𝑥𝐼 ∧ (𝑏𝑥) = (0g‘(𝑅𝑥)))) → ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) = (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)))
445ffvelcdmda 7035 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → (𝑅𝑥) ∈ LMod)
4544adantlr 713 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → (𝑅𝑥) ∈ LMod)
46 simplrl 775 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑎 ∈ (Base‘(Scalar‘𝑃)))
4734adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐼) → 𝑆 = (Scalar‘𝑃))
4811, 47eqtrd 2776 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → (Scalar‘(𝑅𝑥)) = (Scalar‘𝑃))
4948fveq2d 6846 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → (Base‘(Scalar‘(𝑅𝑥))) = (Base‘(Scalar‘𝑃)))
5049adantlr 713 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → (Base‘(Scalar‘(𝑅𝑥))) = (Base‘(Scalar‘𝑃)))
5146, 50eleqtrrd 2841 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑎 ∈ (Base‘(Scalar‘(𝑅𝑥))))
52 eqid 2736 . . . . . . . . . . . . 13 (Scalar‘(𝑅𝑥)) = (Scalar‘(𝑅𝑥))
53 eqid 2736 . . . . . . . . . . . . 13 ( ·𝑠 ‘(𝑅𝑥)) = ( ·𝑠 ‘(𝑅𝑥))
54 eqid 2736 . . . . . . . . . . . . 13 (Base‘(Scalar‘(𝑅𝑥))) = (Base‘(Scalar‘(𝑅𝑥)))
55 eqid 2736 . . . . . . . . . . . . 13 (0g‘(𝑅𝑥)) = (0g‘(𝑅𝑥))
5652, 53, 54, 55lmodvs0 20356 . . . . . . . . . . . 12 (((𝑅𝑥) ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘(𝑅𝑥)))) → (𝑎( ·𝑠 ‘(𝑅𝑥))(0g‘(𝑅𝑥))) = (0g‘(𝑅𝑥)))
5745, 51, 56syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → (𝑎( ·𝑠 ‘(𝑅𝑥))(0g‘(𝑅𝑥))) = (0g‘(𝑅𝑥)))
58 oveq2 7365 . . . . . . . . . . . 12 ((𝑏𝑥) = (0g‘(𝑅𝑥)) → (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)) = (𝑎( ·𝑠 ‘(𝑅𝑥))(0g‘(𝑅𝑥))))
5958eqeq1d 2738 . . . . . . . . . . 11 ((𝑏𝑥) = (0g‘(𝑅𝑥)) → ((𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)) = (0g‘(𝑅𝑥)) ↔ (𝑎( ·𝑠 ‘(𝑅𝑥))(0g‘(𝑅𝑥))) = (0g‘(𝑅𝑥))))
6057, 59syl5ibrcom 246 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → ((𝑏𝑥) = (0g‘(𝑅𝑥)) → (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)) = (0g‘(𝑅𝑥))))
6160impr 455 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ (𝑥𝐼 ∧ (𝑏𝑥) = (0g‘(𝑅𝑥)))) → (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)) = (0g‘(𝑅𝑥)))
6243, 61eqtrd 2776 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ (𝑥𝐼 ∧ (𝑏𝑥) = (0g‘(𝑅𝑥)))) → ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) = (0g‘(𝑅𝑥)))
6362expr 457 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → ((𝑏𝑥) = (0g‘(𝑅𝑥)) → ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) = (0g‘(𝑅𝑥))))
6463necon3d 2964 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → (((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥)) → (𝑏𝑥) ≠ (0g‘(𝑅𝑥))))
6564ss2rabdv 4033 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ⊆ {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))})
6628, 65ssfid 9211 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)
671, 16, 17, 2, 3, 18dsmmelbas 21145 . . . . 5 (𝜑 → ((𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻 ↔ ((𝑎( ·𝑠𝑃)𝑏) ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)))
6867adantr 481 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → ((𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻 ↔ ((𝑎( ·𝑠𝑃)𝑏) ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)))
6927, 66, 68mpbir2and 711 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → (𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻)
7069ralrimivva 3197 . 2 (𝜑 → ∀𝑎 ∈ (Base‘(Scalar‘𝑃))∀𝑏𝐻 (𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻)
71 dsmmlss.u . . . 4 𝑈 = (LSubSp‘𝑃)
7223, 25, 17, 24, 71islss4 20423 . . 3 (𝑃 ∈ LMod → (𝐻𝑈 ↔ (𝐻 ∈ (SubGrp‘𝑃) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑃))∀𝑏𝐻 (𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻)))
7312, 72syl 17 . 2 (𝜑 → (𝐻𝑈 ↔ (𝐻 ∈ (SubGrp‘𝑃) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑃))∀𝑏𝐻 (𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻)))
7410, 70, 73mpbir2and 711 1 (𝜑𝐻𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  {crab 3407  Vcvv 3445  wss 3910   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  Fincfn 8883  Basecbs 17083  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321  Xscprds 17327  Grpcgrp 18748  SubGrpcsubg 18922  Ringcrg 19964  LModclmod 20322  LSubSpclss 20392  m cdsmm 21137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-prds 17329  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-mgp 19897  df-ur 19914  df-ring 19966  df-lmod 20324  df-lss 20393  df-dsmm 21138
This theorem is referenced by:  dsmmlmod  21151  frlmlss  21157
  Copyright terms: Public domain W3C validator