MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmlss Structured version   Visualization version   GIF version

Theorem dsmmlss 20487
Description: The finite hull of a product of modules is additionally closed under scalar multiplication and thus is a linear subspace of the product. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmlss.i (𝜑𝐼𝑊)
dsmmlss.s (𝜑𝑆 ∈ Ring)
dsmmlss.r (𝜑𝑅:𝐼⟶LMod)
dsmmlss.k ((𝜑𝑥𝐼) → (Scalar‘(𝑅𝑥)) = 𝑆)
dsmmlss.p 𝑃 = (𝑆Xs𝑅)
dsmmlss.u 𝑈 = (LSubSp‘𝑃)
dsmmlss.h 𝐻 = (Base‘(𝑆m 𝑅))
Assertion
Ref Expression
dsmmlss (𝜑𝐻𝑈)
Distinct variable groups:   𝜑,𝑥   𝑥,𝑆   𝑥,𝑅   𝑥,𝐼   𝑥,𝑃   𝑥,𝐻
Allowed substitution hints:   𝑈(𝑥)   𝑊(𝑥)

Proof of Theorem dsmmlss
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dsmmlss.p . . 3 𝑃 = (𝑆Xs𝑅)
2 dsmmlss.h . . 3 𝐻 = (Base‘(𝑆m 𝑅))
3 dsmmlss.i . . 3 (𝜑𝐼𝑊)
4 dsmmlss.s . . 3 (𝜑𝑆 ∈ Ring)
5 dsmmlss.r . . . 4 (𝜑𝑅:𝐼⟶LMod)
6 lmodgrp 19262 . . . . 5 (𝑎 ∈ LMod → 𝑎 ∈ Grp)
76ssriv 3825 . . . 4 LMod ⊆ Grp
8 fss 6304 . . . 4 ((𝑅:𝐼⟶LMod ∧ LMod ⊆ Grp) → 𝑅:𝐼⟶Grp)
95, 7, 8sylancl 580 . . 3 (𝜑𝑅:𝐼⟶Grp)
101, 2, 3, 4, 9dsmmsubg 20486 . 2 (𝜑𝐻 ∈ (SubGrp‘𝑃))
11 dsmmlss.k . . . . . . 7 ((𝜑𝑥𝐼) → (Scalar‘(𝑅𝑥)) = 𝑆)
121, 4, 3, 5, 11prdslmodd 19364 . . . . . 6 (𝜑𝑃 ∈ LMod)
1312adantr 474 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑃 ∈ LMod)
14 simprl 761 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑎 ∈ (Base‘(Scalar‘𝑃)))
15 simprr 763 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑏𝐻)
16 eqid 2778 . . . . . . . . 9 (𝑆m 𝑅) = (𝑆m 𝑅)
17 eqid 2778 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑃)
185ffnd 6292 . . . . . . . . 9 (𝜑𝑅 Fn 𝐼)
191, 16, 17, 2, 3, 18dsmmelbas 20482 . . . . . . . 8 (𝜑 → (𝑏𝐻 ↔ (𝑏 ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)))
2019adantr 474 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → (𝑏𝐻 ↔ (𝑏 ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)))
2115, 20mpbid 224 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → (𝑏 ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin))
2221simpld 490 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑏 ∈ (Base‘𝑃))
23 eqid 2778 . . . . . 6 (Scalar‘𝑃) = (Scalar‘𝑃)
24 eqid 2778 . . . . . 6 ( ·𝑠𝑃) = ( ·𝑠𝑃)
25 eqid 2778 . . . . . 6 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
2617, 23, 24, 25lmodvscl 19272 . . . . 5 ((𝑃 ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏 ∈ (Base‘𝑃)) → (𝑎( ·𝑠𝑃)𝑏) ∈ (Base‘𝑃))
2713, 14, 22, 26syl3anc 1439 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → (𝑎( ·𝑠𝑃)𝑏) ∈ (Base‘𝑃))
2821simprd 491 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)
29 eqid 2778 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
304ad2antrr 716 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑆 ∈ Ring)
313ad2antrr 716 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝐼𝑊)
3218ad2antrr 716 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑅 Fn 𝐼)
33 fex 6761 . . . . . . . . . . . . . . . . . 18 ((𝑅:𝐼⟶LMod ∧ 𝐼𝑊) → 𝑅 ∈ V)
345, 3, 33syl2anc 579 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ V)
351, 4, 34prdssca 16502 . . . . . . . . . . . . . . . 16 (𝜑𝑆 = (Scalar‘𝑃))
3635fveq2d 6450 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝑆) = (Base‘(Scalar‘𝑃)))
3736eleq2d 2845 . . . . . . . . . . . . . 14 (𝜑 → (𝑎 ∈ (Base‘𝑆) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑃))))
3837biimpar 471 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (Base‘(Scalar‘𝑃))) → 𝑎 ∈ (Base‘𝑆))
3938adantrr 707 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑎 ∈ (Base‘𝑆))
4039adantr 474 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑎 ∈ (Base‘𝑆))
4122adantr 474 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑏 ∈ (Base‘𝑃))
42 simpr 479 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑥𝐼)
431, 17, 24, 29, 30, 31, 32, 40, 41, 42prdsvscafval 16526 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) = (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)))
4443adantrr 707 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ (𝑥𝐼 ∧ (𝑏𝑥) = (0g‘(𝑅𝑥)))) → ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) = (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)))
455ffvelrnda 6623 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → (𝑅𝑥) ∈ LMod)
4645adantlr 705 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → (𝑅𝑥) ∈ LMod)
47 simplrl 767 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑎 ∈ (Base‘(Scalar‘𝑃)))
4835adantr 474 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐼) → 𝑆 = (Scalar‘𝑃))
4911, 48eqtrd 2814 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → (Scalar‘(𝑅𝑥)) = (Scalar‘𝑃))
5049fveq2d 6450 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → (Base‘(Scalar‘(𝑅𝑥))) = (Base‘(Scalar‘𝑃)))
5150adantlr 705 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → (Base‘(Scalar‘(𝑅𝑥))) = (Base‘(Scalar‘𝑃)))
5247, 51eleqtrrd 2862 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑎 ∈ (Base‘(Scalar‘(𝑅𝑥))))
53 eqid 2778 . . . . . . . . . . . . 13 (Scalar‘(𝑅𝑥)) = (Scalar‘(𝑅𝑥))
54 eqid 2778 . . . . . . . . . . . . 13 ( ·𝑠 ‘(𝑅𝑥)) = ( ·𝑠 ‘(𝑅𝑥))
55 eqid 2778 . . . . . . . . . . . . 13 (Base‘(Scalar‘(𝑅𝑥))) = (Base‘(Scalar‘(𝑅𝑥)))
56 eqid 2778 . . . . . . . . . . . . 13 (0g‘(𝑅𝑥)) = (0g‘(𝑅𝑥))
5753, 54, 55, 56lmodvs0 19289 . . . . . . . . . . . 12 (((𝑅𝑥) ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘(𝑅𝑥)))) → (𝑎( ·𝑠 ‘(𝑅𝑥))(0g‘(𝑅𝑥))) = (0g‘(𝑅𝑥)))
5846, 52, 57syl2anc 579 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → (𝑎( ·𝑠 ‘(𝑅𝑥))(0g‘(𝑅𝑥))) = (0g‘(𝑅𝑥)))
59 oveq2 6930 . . . . . . . . . . . 12 ((𝑏𝑥) = (0g‘(𝑅𝑥)) → (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)) = (𝑎( ·𝑠 ‘(𝑅𝑥))(0g‘(𝑅𝑥))))
6059eqeq1d 2780 . . . . . . . . . . 11 ((𝑏𝑥) = (0g‘(𝑅𝑥)) → ((𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)) = (0g‘(𝑅𝑥)) ↔ (𝑎( ·𝑠 ‘(𝑅𝑥))(0g‘(𝑅𝑥))) = (0g‘(𝑅𝑥))))
6158, 60syl5ibrcom 239 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → ((𝑏𝑥) = (0g‘(𝑅𝑥)) → (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)) = (0g‘(𝑅𝑥))))
6261impr 448 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ (𝑥𝐼 ∧ (𝑏𝑥) = (0g‘(𝑅𝑥)))) → (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)) = (0g‘(𝑅𝑥)))
6344, 62eqtrd 2814 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ (𝑥𝐼 ∧ (𝑏𝑥) = (0g‘(𝑅𝑥)))) → ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) = (0g‘(𝑅𝑥)))
6463expr 450 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → ((𝑏𝑥) = (0g‘(𝑅𝑥)) → ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) = (0g‘(𝑅𝑥))))
6564necon3d 2990 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → (((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥)) → (𝑏𝑥) ≠ (0g‘(𝑅𝑥))))
6665ss2rabdv 3904 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ⊆ {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))})
67 ssfi 8468 . . . . 5 (({𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin ∧ {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ⊆ {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))}) → {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)
6828, 66, 67syl2anc 579 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)
691, 16, 17, 2, 3, 18dsmmelbas 20482 . . . . 5 (𝜑 → ((𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻 ↔ ((𝑎( ·𝑠𝑃)𝑏) ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)))
7069adantr 474 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → ((𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻 ↔ ((𝑎( ·𝑠𝑃)𝑏) ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)))
7127, 68, 70mpbir2and 703 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → (𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻)
7271ralrimivva 3153 . 2 (𝜑 → ∀𝑎 ∈ (Base‘(Scalar‘𝑃))∀𝑏𝐻 (𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻)
73 dsmmlss.u . . . 4 𝑈 = (LSubSp‘𝑃)
7423, 25, 17, 24, 73islss4 19357 . . 3 (𝑃 ∈ LMod → (𝐻𝑈 ↔ (𝐻 ∈ (SubGrp‘𝑃) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑃))∀𝑏𝐻 (𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻)))
7512, 74syl 17 . 2 (𝜑 → (𝐻𝑈 ↔ (𝐻 ∈ (SubGrp‘𝑃) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑃))∀𝑏𝐻 (𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻)))
7610, 72, 75mpbir2and 703 1 (𝜑𝐻𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wne 2969  wral 3090  {crab 3094  Vcvv 3398  wss 3792   Fn wfn 6130  wf 6131  cfv 6135  (class class class)co 6922  Fincfn 8241  Basecbs 16255  Scalarcsca 16341   ·𝑠 cvsca 16342  0gc0g 16486  Xscprds 16492  Grpcgrp 17809  SubGrpcsubg 17972  Ringcrg 18934  LModclmod 19255  LSubSpclss 19324  m cdsmm 20474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-fz 12644  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-hom 16362  df-cco 16363  df-0g 16488  df-prds 16494  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-minusg 17813  df-sbg 17814  df-subg 17975  df-mgp 18877  df-ur 18889  df-ring 18936  df-lmod 19257  df-lss 19325  df-dsmm 20475
This theorem is referenced by:  dsmmlmod  20488  frlmlss  20494
  Copyright terms: Public domain W3C validator