MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmlss Structured version   Visualization version   GIF version

Theorem dsmmlss 21660
Description: The finite hull of a product of modules is additionally closed under scalar multiplication and thus is a linear subspace of the product. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmlss.i (𝜑𝐼𝑊)
dsmmlss.s (𝜑𝑆 ∈ Ring)
dsmmlss.r (𝜑𝑅:𝐼⟶LMod)
dsmmlss.k ((𝜑𝑥𝐼) → (Scalar‘(𝑅𝑥)) = 𝑆)
dsmmlss.p 𝑃 = (𝑆Xs𝑅)
dsmmlss.u 𝑈 = (LSubSp‘𝑃)
dsmmlss.h 𝐻 = (Base‘(𝑆m 𝑅))
Assertion
Ref Expression
dsmmlss (𝜑𝐻𝑈)
Distinct variable groups:   𝜑,𝑥   𝑥,𝑆   𝑥,𝑅   𝑥,𝐼   𝑥,𝑃   𝑥,𝐻
Allowed substitution hints:   𝑈(𝑥)   𝑊(𝑥)

Proof of Theorem dsmmlss
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dsmmlss.p . . 3 𝑃 = (𝑆Xs𝑅)
2 dsmmlss.h . . 3 𝐻 = (Base‘(𝑆m 𝑅))
3 dsmmlss.i . . 3 (𝜑𝐼𝑊)
4 dsmmlss.s . . 3 (𝜑𝑆 ∈ Ring)
5 dsmmlss.r . . . 4 (𝜑𝑅:𝐼⟶LMod)
6 lmodgrp 20780 . . . . 5 (𝑎 ∈ LMod → 𝑎 ∈ Grp)
76ssriv 3953 . . . 4 LMod ⊆ Grp
8 fss 6707 . . . 4 ((𝑅:𝐼⟶LMod ∧ LMod ⊆ Grp) → 𝑅:𝐼⟶Grp)
95, 7, 8sylancl 586 . . 3 (𝜑𝑅:𝐼⟶Grp)
101, 2, 3, 4, 9dsmmsubg 21659 . 2 (𝜑𝐻 ∈ (SubGrp‘𝑃))
11 dsmmlss.k . . . . . . 7 ((𝜑𝑥𝐼) → (Scalar‘(𝑅𝑥)) = 𝑆)
121, 4, 3, 5, 11prdslmodd 20882 . . . . . 6 (𝜑𝑃 ∈ LMod)
1312adantr 480 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑃 ∈ LMod)
14 simprl 770 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑎 ∈ (Base‘(Scalar‘𝑃)))
15 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑏𝐻)
16 eqid 2730 . . . . . . . . 9 (𝑆m 𝑅) = (𝑆m 𝑅)
17 eqid 2730 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑃)
185ffnd 6692 . . . . . . . . 9 (𝜑𝑅 Fn 𝐼)
191, 16, 17, 2, 3, 18dsmmelbas 21655 . . . . . . . 8 (𝜑 → (𝑏𝐻 ↔ (𝑏 ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)))
2019adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → (𝑏𝐻 ↔ (𝑏 ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)))
2115, 20mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → (𝑏 ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin))
2221simpld 494 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑏 ∈ (Base‘𝑃))
23 eqid 2730 . . . . . 6 (Scalar‘𝑃) = (Scalar‘𝑃)
24 eqid 2730 . . . . . 6 ( ·𝑠𝑃) = ( ·𝑠𝑃)
25 eqid 2730 . . . . . 6 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
2617, 23, 24, 25lmodvscl 20791 . . . . 5 ((𝑃 ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏 ∈ (Base‘𝑃)) → (𝑎( ·𝑠𝑃)𝑏) ∈ (Base‘𝑃))
2713, 14, 22, 26syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → (𝑎( ·𝑠𝑃)𝑏) ∈ (Base‘𝑃))
2821simprd 495 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)
29 eqid 2730 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
304ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑆 ∈ Ring)
313ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝐼𝑊)
3218ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑅 Fn 𝐼)
335, 3fexd 7204 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ V)
341, 4, 33prdssca 17426 . . . . . . . . . . . . . . . 16 (𝜑𝑆 = (Scalar‘𝑃))
3534fveq2d 6865 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝑆) = (Base‘(Scalar‘𝑃)))
3635eleq2d 2815 . . . . . . . . . . . . . 14 (𝜑 → (𝑎 ∈ (Base‘𝑆) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑃))))
3736biimpar 477 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (Base‘(Scalar‘𝑃))) → 𝑎 ∈ (Base‘𝑆))
3837adantrr 717 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑎 ∈ (Base‘𝑆))
3938adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑎 ∈ (Base‘𝑆))
4022adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑏 ∈ (Base‘𝑃))
41 simpr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑥𝐼)
421, 17, 24, 29, 30, 31, 32, 39, 40, 41prdsvscafval 17450 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) = (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)))
4342adantrr 717 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ (𝑥𝐼 ∧ (𝑏𝑥) = (0g‘(𝑅𝑥)))) → ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) = (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)))
445ffvelcdmda 7059 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → (𝑅𝑥) ∈ LMod)
4544adantlr 715 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → (𝑅𝑥) ∈ LMod)
46 simplrl 776 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑎 ∈ (Base‘(Scalar‘𝑃)))
4734adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐼) → 𝑆 = (Scalar‘𝑃))
4811, 47eqtrd 2765 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → (Scalar‘(𝑅𝑥)) = (Scalar‘𝑃))
4948fveq2d 6865 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → (Base‘(Scalar‘(𝑅𝑥))) = (Base‘(Scalar‘𝑃)))
5049adantlr 715 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → (Base‘(Scalar‘(𝑅𝑥))) = (Base‘(Scalar‘𝑃)))
5146, 50eleqtrrd 2832 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑎 ∈ (Base‘(Scalar‘(𝑅𝑥))))
52 eqid 2730 . . . . . . . . . . . . 13 (Scalar‘(𝑅𝑥)) = (Scalar‘(𝑅𝑥))
53 eqid 2730 . . . . . . . . . . . . 13 ( ·𝑠 ‘(𝑅𝑥)) = ( ·𝑠 ‘(𝑅𝑥))
54 eqid 2730 . . . . . . . . . . . . 13 (Base‘(Scalar‘(𝑅𝑥))) = (Base‘(Scalar‘(𝑅𝑥)))
55 eqid 2730 . . . . . . . . . . . . 13 (0g‘(𝑅𝑥)) = (0g‘(𝑅𝑥))
5652, 53, 54, 55lmodvs0 20809 . . . . . . . . . . . 12 (((𝑅𝑥) ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘(𝑅𝑥)))) → (𝑎( ·𝑠 ‘(𝑅𝑥))(0g‘(𝑅𝑥))) = (0g‘(𝑅𝑥)))
5745, 51, 56syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → (𝑎( ·𝑠 ‘(𝑅𝑥))(0g‘(𝑅𝑥))) = (0g‘(𝑅𝑥)))
58 oveq2 7398 . . . . . . . . . . . 12 ((𝑏𝑥) = (0g‘(𝑅𝑥)) → (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)) = (𝑎( ·𝑠 ‘(𝑅𝑥))(0g‘(𝑅𝑥))))
5958eqeq1d 2732 . . . . . . . . . . 11 ((𝑏𝑥) = (0g‘(𝑅𝑥)) → ((𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)) = (0g‘(𝑅𝑥)) ↔ (𝑎( ·𝑠 ‘(𝑅𝑥))(0g‘(𝑅𝑥))) = (0g‘(𝑅𝑥))))
6057, 59syl5ibrcom 247 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → ((𝑏𝑥) = (0g‘(𝑅𝑥)) → (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)) = (0g‘(𝑅𝑥))))
6160impr 454 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ (𝑥𝐼 ∧ (𝑏𝑥) = (0g‘(𝑅𝑥)))) → (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)) = (0g‘(𝑅𝑥)))
6243, 61eqtrd 2765 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ (𝑥𝐼 ∧ (𝑏𝑥) = (0g‘(𝑅𝑥)))) → ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) = (0g‘(𝑅𝑥)))
6362expr 456 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → ((𝑏𝑥) = (0g‘(𝑅𝑥)) → ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) = (0g‘(𝑅𝑥))))
6463necon3d 2947 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → (((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥)) → (𝑏𝑥) ≠ (0g‘(𝑅𝑥))))
6564ss2rabdv 4042 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ⊆ {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))})
6628, 65ssfid 9219 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)
671, 16, 17, 2, 3, 18dsmmelbas 21655 . . . . 5 (𝜑 → ((𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻 ↔ ((𝑎( ·𝑠𝑃)𝑏) ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)))
6867adantr 480 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → ((𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻 ↔ ((𝑎( ·𝑠𝑃)𝑏) ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)))
6927, 66, 68mpbir2and 713 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → (𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻)
7069ralrimivva 3181 . 2 (𝜑 → ∀𝑎 ∈ (Base‘(Scalar‘𝑃))∀𝑏𝐻 (𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻)
71 dsmmlss.u . . . 4 𝑈 = (LSubSp‘𝑃)
7223, 25, 17, 24, 71islss4 20875 . . 3 (𝑃 ∈ LMod → (𝐻𝑈 ↔ (𝐻 ∈ (SubGrp‘𝑃) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑃))∀𝑏𝐻 (𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻)))
7312, 72syl 17 . 2 (𝜑 → (𝐻𝑈 ↔ (𝐻 ∈ (SubGrp‘𝑃) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑃))∀𝑏𝐻 (𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻)))
7410, 70, 73mpbir2and 713 1 (𝜑𝐻𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  {crab 3408  Vcvv 3450  wss 3917   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  Fincfn 8921  Basecbs 17186  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  Xscprds 17415  Grpcgrp 18872  SubGrpcsubg 19059  Ringcrg 20149  LModclmod 20773  LSubSpclss 20844  m cdsmm 21647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-prds 17417  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-lmod 20775  df-lss 20845  df-dsmm 21648
This theorem is referenced by:  dsmmlmod  21661  frlmlss  21667
  Copyright terms: Public domain W3C validator