![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwlknf1oclwwlknlem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for clwlknf1oclwwlkn 27416: The bijective function of clwlknf1oclwwlkn 27416 is the bijective function of clwlkclwwlkf1o 27312 restricted to the closed walks with a fixed positive length. (Contributed by AV, 26-May-2022.) (Revised by AV, 1-Nov-2022.) |
Ref | Expression |
---|---|
clwlknf1oclwwlkn.a | ⊢ 𝐴 = (1st ‘𝑐) |
clwlknf1oclwwlkn.b | ⊢ 𝐵 = (2nd ‘𝑐) |
clwlknf1oclwwlkn.c | ⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 𝑁} |
clwlknf1oclwwlkn.f | ⊢ 𝐹 = (𝑐 ∈ 𝐶 ↦ (𝐵 prefix (♯‘𝐴))) |
Ref | Expression |
---|---|
clwlknf1oclwwlknlem3 | ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹 = ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ↦ (𝐵 prefix (♯‘𝐴))) ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwlknf1oclwwlkn.c | . . . 4 ⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 𝑁} | |
2 | nnge1 11342 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 1 ≤ 𝑁) | |
3 | breq2 4847 | . . . . . . 7 ⊢ ((♯‘(1st ‘𝑤)) = 𝑁 → (1 ≤ (♯‘(1st ‘𝑤)) ↔ 1 ≤ 𝑁)) | |
4 | 2, 3 | syl5ibrcom 239 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((♯‘(1st ‘𝑤)) = 𝑁 → 1 ≤ (♯‘(1st ‘𝑤)))) |
5 | 4 | ad2antlr 719 | . . . . 5 ⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑤 ∈ (ClWalks‘𝐺)) → ((♯‘(1st ‘𝑤)) = 𝑁 → 1 ≤ (♯‘(1st ‘𝑤)))) |
6 | 5 | ss2rabdv 3879 | . . . 4 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 𝑁} ⊆ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))}) |
7 | 1, 6 | syl5eqss 3845 | . . 3 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐶 ⊆ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))}) |
8 | 7 | resmptd 5664 | . 2 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ↦ (𝐵 prefix (♯‘𝐴))) ↾ 𝐶) = (𝑐 ∈ 𝐶 ↦ (𝐵 prefix (♯‘𝐴)))) |
9 | clwlknf1oclwwlkn.f | . 2 ⊢ 𝐹 = (𝑐 ∈ 𝐶 ↦ (𝐵 prefix (♯‘𝐴))) | |
10 | 8, 9 | syl6reqr 2852 | 1 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹 = ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ↦ (𝐵 prefix (♯‘𝐴))) ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {crab 3093 class class class wbr 4843 ↦ cmpt 4922 ↾ cres 5314 ‘cfv 6101 (class class class)co 6878 1st c1st 7399 2nd c2nd 7400 1c1 10225 ≤ cle 10364 ℕcn 11312 ♯chash 13370 prefix cpfx 13713 USPGraphcuspgr 26384 ClWalkscclwlks 27024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 |
This theorem is referenced by: clwlknf1oclwwlkn 27416 |
Copyright terms: Public domain | W3C validator |