Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clwlknf1oclwwlknlem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for clwlknf1oclwwlkn 27982: The bijective function of clwlknf1oclwwlkn 27982 is the bijective function of clwlkclwwlkf1o 27909 restricted to the closed walks with a fixed positive length. (Contributed by AV, 26-May-2022.) (Revised by AV, 1-Nov-2022.) |
Ref | Expression |
---|---|
clwlknf1oclwwlkn.a | ⊢ 𝐴 = (1st ‘𝑐) |
clwlknf1oclwwlkn.b | ⊢ 𝐵 = (2nd ‘𝑐) |
clwlknf1oclwwlkn.c | ⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 𝑁} |
clwlknf1oclwwlkn.f | ⊢ 𝐹 = (𝑐 ∈ 𝐶 ↦ (𝐵 prefix (♯‘𝐴))) |
Ref | Expression |
---|---|
clwlknf1oclwwlknlem3 | ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹 = ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ↦ (𝐵 prefix (♯‘𝐴))) ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwlknf1oclwwlkn.f | . 2 ⊢ 𝐹 = (𝑐 ∈ 𝐶 ↦ (𝐵 prefix (♯‘𝐴))) | |
2 | clwlknf1oclwwlkn.c | . . . 4 ⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 𝑁} | |
3 | nnge1 11715 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 1 ≤ 𝑁) | |
4 | breq2 5040 | . . . . . . 7 ⊢ ((♯‘(1st ‘𝑤)) = 𝑁 → (1 ≤ (♯‘(1st ‘𝑤)) ↔ 1 ≤ 𝑁)) | |
5 | 3, 4 | syl5ibrcom 250 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((♯‘(1st ‘𝑤)) = 𝑁 → 1 ≤ (♯‘(1st ‘𝑤)))) |
6 | 5 | ad2antlr 726 | . . . . 5 ⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑤 ∈ (ClWalks‘𝐺)) → ((♯‘(1st ‘𝑤)) = 𝑁 → 1 ≤ (♯‘(1st ‘𝑤)))) |
7 | 6 | ss2rabdv 3982 | . . . 4 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 𝑁} ⊆ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))}) |
8 | 2, 7 | eqsstrid 3942 | . . 3 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐶 ⊆ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))}) |
9 | 8 | resmptd 5885 | . 2 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ↦ (𝐵 prefix (♯‘𝐴))) ↾ 𝐶) = (𝑐 ∈ 𝐶 ↦ (𝐵 prefix (♯‘𝐴)))) |
10 | 1, 9 | eqtr4id 2812 | 1 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹 = ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ↦ (𝐵 prefix (♯‘𝐴))) ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {crab 3074 class class class wbr 5036 ↦ cmpt 5116 ↾ cres 5530 ‘cfv 6340 (class class class)co 7156 1st c1st 7697 2nd c2nd 7698 1c1 10589 ≤ cle 10727 ℕcn 11687 ♯chash 13753 prefix cpfx 14092 USPGraphcuspgr 27054 ClWalkscclwlks 27672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 |
This theorem is referenced by: clwlknf1oclwwlkn 27982 |
Copyright terms: Public domain | W3C validator |