![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > harword | Structured version Visualization version GIF version |
Description: Weak ordering property of the Hartogs function. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
Ref | Expression |
---|---|
harword | ⊢ (𝑋 ≼ 𝑌 → (har‘𝑋) ⊆ (har‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domtr 8296 | . . . . 5 ⊢ ((𝑦 ≼ 𝑋 ∧ 𝑋 ≼ 𝑌) → 𝑦 ≼ 𝑌) | |
2 | 1 | expcom 404 | . . . 4 ⊢ (𝑋 ≼ 𝑌 → (𝑦 ≼ 𝑋 → 𝑦 ≼ 𝑌)) |
3 | 2 | adantr 474 | . . 3 ⊢ ((𝑋 ≼ 𝑌 ∧ 𝑦 ∈ On) → (𝑦 ≼ 𝑋 → 𝑦 ≼ 𝑌)) |
4 | 3 | ss2rabdv 3904 | . 2 ⊢ (𝑋 ≼ 𝑌 → {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋} ⊆ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑌}) |
5 | reldom 8249 | . . . 4 ⊢ Rel ≼ | |
6 | 5 | brrelex1i 5408 | . . 3 ⊢ (𝑋 ≼ 𝑌 → 𝑋 ∈ V) |
7 | harval 8758 | . . 3 ⊢ (𝑋 ∈ V → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝑋 ≼ 𝑌 → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) |
9 | 5 | brrelex2i 5409 | . . 3 ⊢ (𝑋 ≼ 𝑌 → 𝑌 ∈ V) |
10 | harval 8758 | . . 3 ⊢ (𝑌 ∈ V → (har‘𝑌) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑌}) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (𝑋 ≼ 𝑌 → (har‘𝑌) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑌}) |
12 | 4, 8, 11 | 3sstr4d 3867 | 1 ⊢ (𝑋 ≼ 𝑌 → (har‘𝑋) ⊆ (har‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 {crab 3094 Vcvv 3398 ⊆ wss 3792 class class class wbr 4888 Oncon0 5978 ‘cfv 6137 ≼ cdom 8241 harchar 8752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-wrecs 7691 df-recs 7753 df-en 8244 df-dom 8245 df-oi 8706 df-har 8754 |
This theorem is referenced by: hsmexlem3 9587 |
Copyright terms: Public domain | W3C validator |