| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > harword | Structured version Visualization version GIF version | ||
| Description: Weak ordering property of the Hartogs function. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
| Ref | Expression |
|---|---|
| harword | ⊢ (𝑋 ≼ 𝑌 → (har‘𝑋) ⊆ (har‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domtr 8929 | . . . . 5 ⊢ ((𝑦 ≼ 𝑋 ∧ 𝑋 ≼ 𝑌) → 𝑦 ≼ 𝑌) | |
| 2 | 1 | expcom 413 | . . . 4 ⊢ (𝑋 ≼ 𝑌 → (𝑦 ≼ 𝑋 → 𝑦 ≼ 𝑌)) |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝑋 ≼ 𝑌 ∧ 𝑦 ∈ On) → (𝑦 ≼ 𝑋 → 𝑦 ≼ 𝑌)) |
| 4 | 3 | ss2rabdv 4021 | . 2 ⊢ (𝑋 ≼ 𝑌 → {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋} ⊆ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑌}) |
| 5 | reldom 8875 | . . . 4 ⊢ Rel ≼ | |
| 6 | 5 | brrelex1i 5670 | . . 3 ⊢ (𝑋 ≼ 𝑌 → 𝑋 ∈ V) |
| 7 | harval 9446 | . . 3 ⊢ (𝑋 ∈ V → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝑋 ≼ 𝑌 → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) |
| 9 | 5 | brrelex2i 5671 | . . 3 ⊢ (𝑋 ≼ 𝑌 → 𝑌 ∈ V) |
| 10 | harval 9446 | . . 3 ⊢ (𝑌 ∈ V → (har‘𝑌) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑌}) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (𝑋 ≼ 𝑌 → (har‘𝑌) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑌}) |
| 12 | 4, 8, 11 | 3sstr4d 3985 | 1 ⊢ (𝑋 ≼ 𝑌 → (har‘𝑋) ⊆ (har‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ⊆ wss 3897 class class class wbr 5089 Oncon0 6306 ‘cfv 6481 ≼ cdom 8867 harchar 9442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-en 8870 df-dom 8871 df-oi 9396 df-har 9443 |
| This theorem is referenced by: hsmexlem3 10319 |
| Copyright terms: Public domain | W3C validator |