Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > harword | Structured version Visualization version GIF version |
Description: Weak ordering property of the Hartogs function. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
Ref | Expression |
---|---|
harword | ⊢ (𝑋 ≼ 𝑌 → (har‘𝑋) ⊆ (har‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domtr 8793 | . . . . 5 ⊢ ((𝑦 ≼ 𝑋 ∧ 𝑋 ≼ 𝑌) → 𝑦 ≼ 𝑌) | |
2 | 1 | expcom 414 | . . . 4 ⊢ (𝑋 ≼ 𝑌 → (𝑦 ≼ 𝑋 → 𝑦 ≼ 𝑌)) |
3 | 2 | adantr 481 | . . 3 ⊢ ((𝑋 ≼ 𝑌 ∧ 𝑦 ∈ On) → (𝑦 ≼ 𝑋 → 𝑦 ≼ 𝑌)) |
4 | 3 | ss2rabdv 4009 | . 2 ⊢ (𝑋 ≼ 𝑌 → {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋} ⊆ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑌}) |
5 | reldom 8739 | . . . 4 ⊢ Rel ≼ | |
6 | 5 | brrelex1i 5643 | . . 3 ⊢ (𝑋 ≼ 𝑌 → 𝑋 ∈ V) |
7 | harval 9319 | . . 3 ⊢ (𝑋 ∈ V → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝑋 ≼ 𝑌 → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) |
9 | 5 | brrelex2i 5644 | . . 3 ⊢ (𝑋 ≼ 𝑌 → 𝑌 ∈ V) |
10 | harval 9319 | . . 3 ⊢ (𝑌 ∈ V → (har‘𝑌) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑌}) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (𝑋 ≼ 𝑌 → (har‘𝑌) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑌}) |
12 | 4, 8, 11 | 3sstr4d 3968 | 1 ⊢ (𝑋 ≼ 𝑌 → (har‘𝑋) ⊆ (har‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 ⊆ wss 3887 class class class wbr 5074 Oncon0 6266 ‘cfv 6433 ≼ cdom 8731 harchar 9315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-en 8734 df-dom 8735 df-oi 9269 df-har 9316 |
This theorem is referenced by: hsmexlem3 10184 |
Copyright terms: Public domain | W3C validator |