| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > harword | Structured version Visualization version GIF version | ||
| Description: Weak ordering property of the Hartogs function. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
| Ref | Expression |
|---|---|
| harword | ⊢ (𝑋 ≼ 𝑌 → (har‘𝑋) ⊆ (har‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domtr 8955 | . . . . 5 ⊢ ((𝑦 ≼ 𝑋 ∧ 𝑋 ≼ 𝑌) → 𝑦 ≼ 𝑌) | |
| 2 | 1 | expcom 413 | . . . 4 ⊢ (𝑋 ≼ 𝑌 → (𝑦 ≼ 𝑋 → 𝑦 ≼ 𝑌)) |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝑋 ≼ 𝑌 ∧ 𝑦 ∈ On) → (𝑦 ≼ 𝑋 → 𝑦 ≼ 𝑌)) |
| 4 | 3 | ss2rabdv 4035 | . 2 ⊢ (𝑋 ≼ 𝑌 → {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋} ⊆ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑌}) |
| 5 | reldom 8901 | . . . 4 ⊢ Rel ≼ | |
| 6 | 5 | brrelex1i 5687 | . . 3 ⊢ (𝑋 ≼ 𝑌 → 𝑋 ∈ V) |
| 7 | harval 9489 | . . 3 ⊢ (𝑋 ∈ V → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝑋 ≼ 𝑌 → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) |
| 9 | 5 | brrelex2i 5688 | . . 3 ⊢ (𝑋 ≼ 𝑌 → 𝑌 ∈ V) |
| 10 | harval 9489 | . . 3 ⊢ (𝑌 ∈ V → (har‘𝑌) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑌}) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (𝑋 ≼ 𝑌 → (har‘𝑌) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑌}) |
| 12 | 4, 8, 11 | 3sstr4d 3999 | 1 ⊢ (𝑋 ≼ 𝑌 → (har‘𝑋) ⊆ (har‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3402 Vcvv 3444 ⊆ wss 3911 class class class wbr 5102 Oncon0 6320 ‘cfv 6499 ≼ cdom 8893 harchar 9485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-en 8896 df-dom 8897 df-oi 9439 df-har 9486 |
| This theorem is referenced by: hsmexlem3 10357 |
| Copyright terms: Public domain | W3C validator |