| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > harword | Structured version Visualization version GIF version | ||
| Description: Weak ordering property of the Hartogs function. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
| Ref | Expression |
|---|---|
| harword | ⊢ (𝑋 ≼ 𝑌 → (har‘𝑋) ⊆ (har‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domtr 8981 | . . . . 5 ⊢ ((𝑦 ≼ 𝑋 ∧ 𝑋 ≼ 𝑌) → 𝑦 ≼ 𝑌) | |
| 2 | 1 | expcom 413 | . . . 4 ⊢ (𝑋 ≼ 𝑌 → (𝑦 ≼ 𝑋 → 𝑦 ≼ 𝑌)) |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝑋 ≼ 𝑌 ∧ 𝑦 ∈ On) → (𝑦 ≼ 𝑋 → 𝑦 ≼ 𝑌)) |
| 4 | 3 | ss2rabdv 4042 | . 2 ⊢ (𝑋 ≼ 𝑌 → {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋} ⊆ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑌}) |
| 5 | reldom 8927 | . . . 4 ⊢ Rel ≼ | |
| 6 | 5 | brrelex1i 5697 | . . 3 ⊢ (𝑋 ≼ 𝑌 → 𝑋 ∈ V) |
| 7 | harval 9520 | . . 3 ⊢ (𝑋 ∈ V → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝑋 ≼ 𝑌 → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) |
| 9 | 5 | brrelex2i 5698 | . . 3 ⊢ (𝑋 ≼ 𝑌 → 𝑌 ∈ V) |
| 10 | harval 9520 | . . 3 ⊢ (𝑌 ∈ V → (har‘𝑌) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑌}) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (𝑋 ≼ 𝑌 → (har‘𝑌) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑌}) |
| 12 | 4, 8, 11 | 3sstr4d 4005 | 1 ⊢ (𝑋 ≼ 𝑌 → (har‘𝑋) ⊆ (har‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ⊆ wss 3917 class class class wbr 5110 Oncon0 6335 ‘cfv 6514 ≼ cdom 8919 harchar 9516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-en 8922 df-dom 8923 df-oi 9470 df-har 9517 |
| This theorem is referenced by: hsmexlem3 10388 |
| Copyright terms: Public domain | W3C validator |