Step | Hyp | Ref
| Expression |
1 | | isfi 8579 |
. . 3
⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
2 | | bren 8564 |
. . . . 5
⊢ (𝐴 ≈ 𝑥 ↔ ∃𝑧 𝑧:𝐴–1-1-onto→𝑥) |
3 | | f1ofo 6625 |
. . . . . . . . . . 11
⊢ (𝑧:𝐴–1-1-onto→𝑥 → 𝑧:𝐴–onto→𝑥) |
4 | | imassrn 5914 |
. . . . . . . . . . . 12
⊢ (𝑧 “ 𝐵) ⊆ ran 𝑧 |
5 | | forn 6595 |
. . . . . . . . . . . 12
⊢ (𝑧:𝐴–onto→𝑥 → ran 𝑧 = 𝑥) |
6 | 4, 5 | sseqtrid 3929 |
. . . . . . . . . . 11
⊢ (𝑧:𝐴–onto→𝑥 → (𝑧 “ 𝐵) ⊆ 𝑥) |
7 | 3, 6 | syl 17 |
. . . . . . . . . 10
⊢ (𝑧:𝐴–1-1-onto→𝑥 → (𝑧 “ 𝐵) ⊆ 𝑥) |
8 | | ssnnfi 8768 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ω ∧ (𝑧 “ 𝐵) ⊆ 𝑥) → (𝑧 “ 𝐵) ∈ Fin) |
9 | | isfi 8579 |
. . . . . . . . . . 11
⊢ ((𝑧 “ 𝐵) ∈ Fin ↔ ∃𝑦 ∈ ω (𝑧 “ 𝐵) ≈ 𝑦) |
10 | 8, 9 | sylib 221 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ω ∧ (𝑧 “ 𝐵) ⊆ 𝑥) → ∃𝑦 ∈ ω (𝑧 “ 𝐵) ≈ 𝑦) |
11 | 7, 10 | sylan2 596 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ω ∧ 𝑧:𝐴–1-1-onto→𝑥) → ∃𝑦 ∈ ω (𝑧 “ 𝐵) ≈ 𝑦) |
12 | 11 | adantrr 717 |
. . . . . . . 8
⊢ ((𝑥 ∈ ω ∧ (𝑧:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊆ 𝐴)) → ∃𝑦 ∈ ω (𝑧 “ 𝐵) ≈ 𝑦) |
13 | | f1of1 6617 |
. . . . . . . . . . . . . 14
⊢ (𝑧:𝐴–1-1-onto→𝑥 → 𝑧:𝐴–1-1→𝑥) |
14 | | f1ores 6632 |
. . . . . . . . . . . . . 14
⊢ ((𝑧:𝐴–1-1→𝑥 ∧ 𝐵 ⊆ 𝐴) → (𝑧 ↾ 𝐵):𝐵–1-1-onto→(𝑧 “ 𝐵)) |
15 | 13, 14 | sylan 583 |
. . . . . . . . . . . . 13
⊢ ((𝑧:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊆ 𝐴) → (𝑧 ↾ 𝐵):𝐵–1-1-onto→(𝑧 “ 𝐵)) |
16 | | vex 3402 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑧 ∈ V |
17 | 16 | resex 5873 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ↾ 𝐵) ∈ V |
18 | | f1oeq1 6606 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑧 ↾ 𝐵) → (𝑥:𝐵–1-1-onto→(𝑧 “ 𝐵) ↔ (𝑧 ↾ 𝐵):𝐵–1-1-onto→(𝑧 “ 𝐵))) |
19 | 17, 18 | spcev 3510 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ↾ 𝐵):𝐵–1-1-onto→(𝑧 “ 𝐵) → ∃𝑥 𝑥:𝐵–1-1-onto→(𝑧 “ 𝐵)) |
20 | | bren 8564 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ≈ (𝑧 “ 𝐵) ↔ ∃𝑥 𝑥:𝐵–1-1-onto→(𝑧 “ 𝐵)) |
21 | 19, 20 | sylibr 237 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ↾ 𝐵):𝐵–1-1-onto→(𝑧 “ 𝐵) → 𝐵 ≈ (𝑧 “ 𝐵)) |
22 | | entr 8607 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ≈ (𝑧 “ 𝐵) ∧ (𝑧 “ 𝐵) ≈ 𝑦) → 𝐵 ≈ 𝑦) |
23 | 21, 22 | sylan 583 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ↾ 𝐵):𝐵–1-1-onto→(𝑧 “ 𝐵) ∧ (𝑧 “ 𝐵) ≈ 𝑦) → 𝐵 ≈ 𝑦) |
24 | 15, 23 | sylan 583 |
. . . . . . . . . . . 12
⊢ (((𝑧:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊆ 𝐴) ∧ (𝑧 “ 𝐵) ≈ 𝑦) → 𝐵 ≈ 𝑦) |
25 | 24 | ex 416 |
. . . . . . . . . . 11
⊢ ((𝑧:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊆ 𝐴) → ((𝑧 “ 𝐵) ≈ 𝑦 → 𝐵 ≈ 𝑦)) |
26 | 25 | reximdv 3183 |
. . . . . . . . . 10
⊢ ((𝑧:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊆ 𝐴) → (∃𝑦 ∈ ω (𝑧 “ 𝐵) ≈ 𝑦 → ∃𝑦 ∈ ω 𝐵 ≈ 𝑦)) |
27 | | isfi 8579 |
. . . . . . . . . 10
⊢ (𝐵 ∈ Fin ↔ ∃𝑦 ∈ ω 𝐵 ≈ 𝑦) |
28 | 26, 27 | syl6ibr 255 |
. . . . . . . . 9
⊢ ((𝑧:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊆ 𝐴) → (∃𝑦 ∈ ω (𝑧 “ 𝐵) ≈ 𝑦 → 𝐵 ∈ Fin)) |
29 | 28 | adantl 485 |
. . . . . . . 8
⊢ ((𝑥 ∈ ω ∧ (𝑧:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊆ 𝐴)) → (∃𝑦 ∈ ω (𝑧 “ 𝐵) ≈ 𝑦 → 𝐵 ∈ Fin)) |
30 | 12, 29 | mpd 15 |
. . . . . . 7
⊢ ((𝑥 ∈ ω ∧ (𝑧:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊆ 𝐴)) → 𝐵 ∈ Fin) |
31 | 30 | exp32 424 |
. . . . . 6
⊢ (𝑥 ∈ ω → (𝑧:𝐴–1-1-onto→𝑥 → (𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin))) |
32 | 31 | exlimdv 1940 |
. . . . 5
⊢ (𝑥 ∈ ω →
(∃𝑧 𝑧:𝐴–1-1-onto→𝑥 → (𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin))) |
33 | 2, 32 | syl5bi 245 |
. . . 4
⊢ (𝑥 ∈ ω → (𝐴 ≈ 𝑥 → (𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin))) |
34 | 33 | rexlimiv 3190 |
. . 3
⊢
(∃𝑥 ∈
ω 𝐴 ≈ 𝑥 → (𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin)) |
35 | 1, 34 | sylbi 220 |
. 2
⊢ (𝐴 ∈ Fin → (𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin)) |
36 | 35 | imp 410 |
1
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) |