![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sssmfmpt | Structured version Visualization version GIF version |
Description: The restriction of a sigma-measurable function is sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
sssmfmpt.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
sssmfmpt.f | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
sssmfmpt.c | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
Ref | Expression |
---|---|
sssmfmpt | ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssmfmpt.c | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
2 | 1 | resmptd 6034 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ 𝐵)) |
3 | 2 | eqcomd 2732 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐵) = ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶)) |
4 | sssmfmpt.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
5 | sssmfmpt.f | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
6 | 4, 5 | sssmf 46023 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶) ∈ (SMblFn‘𝑆)) |
7 | 3, 6 | eqeltrd 2827 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ⊆ wss 3943 ↦ cmpt 5224 ↾ cres 5671 ‘cfv 6537 SAlgcsalg 45593 SMblFncsmblfn 45980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-er 8705 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-ioo 13334 df-ico 13336 df-rest 17377 df-smblfn 45981 |
This theorem is referenced by: smfaddlem2 46049 smfrec 46074 smfmullem4 46079 |
Copyright terms: Public domain | W3C validator |