Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssmfmpt Structured version   Visualization version   GIF version

Theorem sssmfmpt 46673
Description: The restriction of a sigma-measurable function is sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
sssmfmpt.s (𝜑𝑆 ∈ SAlg)
sssmfmpt.f (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
sssmfmpt.c (𝜑𝐶𝐴)
Assertion
Ref Expression
sssmfmpt (𝜑 → (𝑥𝐶𝐵) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem sssmfmpt
StepHypRef Expression
1 sssmfmpt.c . . . 4 (𝜑𝐶𝐴)
21resmptd 6071 . . 3 (𝜑 → ((𝑥𝐴𝐵) ↾ 𝐶) = (𝑥𝐶𝐵))
32eqcomd 2746 . 2 (𝜑 → (𝑥𝐶𝐵) = ((𝑥𝐴𝐵) ↾ 𝐶))
4 sssmfmpt.s . . 3 (𝜑𝑆 ∈ SAlg)
5 sssmfmpt.f . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
64, 5sssmf 46661 . 2 (𝜑 → ((𝑥𝐴𝐵) ↾ 𝐶) ∈ (SMblFn‘𝑆))
73, 6eqeltrd 2844 1 (𝜑 → (𝑥𝐶𝐵) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3976  cmpt 5249  cres 5702  cfv 6575  SAlgcsalg 46231  SMblFncsmblfn 46618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-pre-lttri 11260  ax-pre-lttrn 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-1st 8032  df-2nd 8033  df-er 8765  df-pm 8889  df-en 9006  df-dom 9007  df-sdom 9008  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-ioo 13413  df-ico 13415  df-rest 17484  df-smblfn 46619
This theorem is referenced by:  smfaddlem2  46687  smfrec  46712  smfmullem4  46717
  Copyright terms: Public domain W3C validator