Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnfrrnsmf Structured version   Visualization version   GIF version

Theorem cnfrrnsmf 45453
Description: A function, continuous from the standard topology on the space of n-dimensional reals to the standard topology on the reals, is Borel measurable. Proposition 121D (b) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
cnfrrnsmf.x (πœ‘ β†’ 𝑋 ∈ Fin)
cnfrrnsmf.j 𝐽 = (TopOpenβ€˜(ℝ^β€˜π‘‹))
cnfrrnsmf.k 𝐾 = (topGenβ€˜ran (,))
cnfrrnsmf.f (πœ‘ β†’ 𝐹 ∈ ((𝐽 β†Ύt dom 𝐹) Cn 𝐾))
cnfrrnsmf.b 𝐡 = (SalGenβ€˜π½)
Assertion
Ref Expression
cnfrrnsmf (πœ‘ β†’ 𝐹 ∈ (SMblFnβ€˜π΅))

Proof of Theorem cnfrrnsmf
StepHypRef Expression
1 cnfrrnsmf.x . . 3 (πœ‘ β†’ 𝑋 ∈ Fin)
2 cnfrrnsmf.j . . . 4 𝐽 = (TopOpenβ€˜(ℝ^β€˜π‘‹))
32rrxtop 44991 . . 3 (𝑋 ∈ Fin β†’ 𝐽 ∈ Top)
41, 3syl 17 . 2 (πœ‘ β†’ 𝐽 ∈ Top)
5 cnfrrnsmf.k . 2 𝐾 = (topGenβ€˜ran (,))
6 cnfrrnsmf.f . 2 (πœ‘ β†’ 𝐹 ∈ ((𝐽 β†Ύt dom 𝐹) Cn 𝐾))
7 cnfrrnsmf.b . 2 𝐡 = (SalGenβ€˜π½)
84, 5, 6, 7cnfsmf 45442 1 (πœ‘ β†’ 𝐹 ∈ (SMblFnβ€˜π΅))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  dom cdm 5675  ran crn 5676  β€˜cfv 6540  (class class class)co 7405  Fincfn 8935  (,)cioo 13320   β†Ύt crest 17362  TopOpenctopn 17363  topGenctg 17379  Topctop 22386   Cn ccn 22719  β„^crrx 24891  SalGencsalgen 45014  SMblFncsmblfn 45397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ico 13326  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-prds 17389  df-pws 17391  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-subg 18997  df-ghm 19084  df-cntz 19175  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-cring 20052  df-oppr 20142  df-dvdsr 20163  df-unit 20164  df-invr 20194  df-dvr 20207  df-rnghom 20243  df-drng 20309  df-field 20310  df-subrg 20353  df-abv 20417  df-staf 20445  df-srng 20446  df-lmod 20465  df-lss 20535  df-lmhm 20625  df-lvec 20706  df-sra 20777  df-rgmod 20778  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-cnfld 20937  df-refld 21149  df-phl 21170  df-dsmm 21278  df-frlm 21293  df-top 22387  df-topon 22404  df-topsp 22426  df-bases 22440  df-cn 22722  df-xms 23817  df-ms 23818  df-nm 24082  df-ngp 24083  df-tng 24084  df-nrg 24085  df-nlm 24086  df-clm 24570  df-cph 24676  df-tcph 24677  df-rrx 24893  df-salg 45011  df-salgen 45015  df-smblfn 45398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator