| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elicc01 | Structured version Visualization version GIF version | ||
| Description: Membership in the closed real interval between 0 and 1, also called the closed unit interval. (Contributed by AV, 20-Aug-2022.) |
| Ref | Expression |
|---|---|
| elicc01 | ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11183 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1re 11181 | . 2 ⊢ 1 ∈ ℝ | |
| 3 | 1, 2 | elicc2i 13380 | 1 ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 ≤ cle 11216 [,]cicc 13316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-i2m1 11143 ax-1ne0 11144 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-icc 13320 |
| This theorem is referenced by: elunitrn 13435 0elunit 13437 1elunit 13438 divelunit 13462 lincmb01cmp 13463 iccf1o 13464 rpnnen2lem12 16200 blcvx 24693 iirev 24830 iihalf2 24835 elii2 24839 iimulcl 24840 iccpnfhmeo 24850 xrhmeo 24851 lebnumii 24872 htpycc 24886 pcocn 24924 pcohtpylem 24926 pcopt 24929 pcopt2 24930 pcoass 24931 pcorevlem 24933 vitalilem2 25517 abelth2 26359 chordthmlem4 26752 leibpi 26859 jensenlem2 26905 lgamgulmlem2 26947 ttgcontlem1 28819 brbtwn2 28839 ax5seglem1 28862 ax5seglem2 28863 ax5seglem3 28865 ax5seglem5 28867 ax5seglem6 28868 ax5seglem9 28871 ax5seg 28872 axbtwnid 28873 axpaschlem 28874 axpasch 28875 axcontlem2 28899 axcontlem4 28901 axcontlem7 28904 stge0 32160 stle1 32161 strlem3a 32188 elunitge0 33896 unitdivcld 33898 xrge0iifiso 33932 xrge0iifhom 33934 resconn 35240 snmlff 35323 poimirlem29 37650 poimirlem30 37651 poimirlem31 37652 poimirlem32 37653 i0oii 48912 io1ii 48913 |
| Copyright terms: Public domain | W3C validator |