| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elicc01 | Structured version Visualization version GIF version | ||
| Description: Membership in the closed real interval between 0 and 1, also called the closed unit interval. (Contributed by AV, 20-Aug-2022.) |
| Ref | Expression |
|---|---|
| elicc01 | ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11176 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1re 11174 | . 2 ⊢ 1 ∈ ℝ | |
| 3 | 1, 2 | elicc2i 13373 | 1 ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 ≤ cle 11209 [,]cicc 13309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-i2m1 11136 ax-1ne0 11137 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-icc 13313 |
| This theorem is referenced by: elunitrn 13428 0elunit 13430 1elunit 13431 divelunit 13455 lincmb01cmp 13456 iccf1o 13457 rpnnen2lem12 16193 blcvx 24686 iirev 24823 iihalf2 24828 elii2 24832 iimulcl 24833 iccpnfhmeo 24843 xrhmeo 24844 lebnumii 24865 htpycc 24879 pcocn 24917 pcohtpylem 24919 pcopt 24922 pcopt2 24923 pcoass 24924 pcorevlem 24926 vitalilem2 25510 abelth2 26352 chordthmlem4 26745 leibpi 26852 jensenlem2 26898 lgamgulmlem2 26940 ttgcontlem1 28812 brbtwn2 28832 ax5seglem1 28855 ax5seglem2 28856 ax5seglem3 28858 ax5seglem5 28860 ax5seglem6 28861 ax5seglem9 28864 ax5seg 28865 axbtwnid 28866 axpaschlem 28867 axpasch 28868 axcontlem2 28892 axcontlem4 28894 axcontlem7 28897 stge0 32153 stle1 32154 strlem3a 32181 elunitge0 33889 unitdivcld 33891 xrge0iifiso 33925 xrge0iifhom 33927 resconn 35233 snmlff 35316 poimirlem29 37643 poimirlem30 37644 poimirlem31 37645 poimirlem32 37646 i0oii 48908 io1ii 48909 |
| Copyright terms: Public domain | W3C validator |