| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elicc01 | Structured version Visualization version GIF version | ||
| Description: Membership in the closed real interval between 0 and 1, also called the closed unit interval. (Contributed by AV, 20-Aug-2022.) |
| Ref | Expression |
|---|---|
| elicc01 | ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11237 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1re 11235 | . 2 ⊢ 1 ∈ ℝ | |
| 3 | 1, 2 | elicc2i 13429 | 1 ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 ℝcr 11128 0cc0 11129 1c1 11130 ≤ cle 11270 [,]cicc 13365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-i2m1 11197 ax-1ne0 11198 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-icc 13369 |
| This theorem is referenced by: elunitrn 13484 0elunit 13486 1elunit 13487 divelunit 13511 lincmb01cmp 13512 iccf1o 13513 rpnnen2lem12 16243 blcvx 24737 iirev 24874 iihalf2 24879 elii2 24883 iimulcl 24884 iccpnfhmeo 24894 xrhmeo 24895 lebnumii 24916 htpycc 24930 pcocn 24968 pcohtpylem 24970 pcopt 24973 pcopt2 24974 pcoass 24975 pcorevlem 24977 vitalilem2 25562 abelth2 26404 chordthmlem4 26797 leibpi 26904 jensenlem2 26950 lgamgulmlem2 26992 ttgcontlem1 28864 brbtwn2 28884 ax5seglem1 28907 ax5seglem2 28908 ax5seglem3 28910 ax5seglem5 28912 ax5seglem6 28913 ax5seglem9 28916 ax5seg 28917 axbtwnid 28918 axpaschlem 28919 axpasch 28920 axcontlem2 28944 axcontlem4 28946 axcontlem7 28949 stge0 32205 stle1 32206 strlem3a 32233 elunitge0 33930 unitdivcld 33932 xrge0iifiso 33966 xrge0iifhom 33968 resconn 35268 snmlff 35351 poimirlem29 37673 poimirlem30 37674 poimirlem31 37675 poimirlem32 37676 i0oii 48894 io1ii 48895 |
| Copyright terms: Public domain | W3C validator |