![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elicc01 | Structured version Visualization version GIF version |
Description: Membership in the closed real interval between 0 and 1, also called the closed unit interval. (Contributed by AV, 20-Aug-2022.) |
Ref | Expression |
---|---|
elicc01 | ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11292 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1re 11290 | . 2 ⊢ 1 ∈ ℝ | |
3 | 1, 2 | elicc2i 13473 | 1 ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 ≤ cle 11325 [,]cicc 13410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-i2m1 11252 ax-1ne0 11253 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-icc 13414 |
This theorem is referenced by: elunitrn 13527 0elunit 13529 1elunit 13530 divelunit 13554 lincmb01cmp 13555 iccf1o 13556 rpnnen2lem12 16273 blcvx 24839 iirev 24975 iihalf2 24980 elii2 24984 iimulcl 24985 iccpnfhmeo 24995 xrhmeo 24996 lebnumii 25017 htpycc 25031 pcocn 25069 pcohtpylem 25071 pcopt 25074 pcopt2 25075 pcoass 25076 pcorevlem 25078 vitalilem2 25663 abelth2 26504 chordthmlem4 26896 leibpi 27003 jensenlem2 27049 lgamgulmlem2 27091 ttgcontlem1 28917 brbtwn2 28938 ax5seglem1 28961 ax5seglem2 28962 ax5seglem3 28964 ax5seglem5 28966 ax5seglem6 28967 ax5seglem9 28970 ax5seg 28971 axbtwnid 28972 axpaschlem 28973 axpasch 28974 axcontlem2 28998 axcontlem4 29000 axcontlem7 29003 stge0 32256 stle1 32257 strlem3a 32284 elunitge0 33845 unitdivcld 33847 xrge0iifiso 33881 xrge0iifhom 33883 resconn 35214 snmlff 35297 poimirlem29 37609 poimirlem30 37610 poimirlem31 37611 poimirlem32 37612 i0oii 48599 io1ii 48600 |
Copyright terms: Public domain | W3C validator |