![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elicc01 | Structured version Visualization version GIF version |
Description: Membership in the closed real interval between 0 and 1, also called the closed unit interval. (Contributed by AV, 20-Aug-2022.) |
Ref | Expression |
---|---|
elicc01 | ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11261 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1re 11259 | . 2 ⊢ 1 ∈ ℝ | |
3 | 1, 2 | elicc2i 13450 | 1 ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 ℝcr 11152 0cc0 11153 1c1 11154 ≤ cle 11294 [,]cicc 13387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-i2m1 11221 ax-1ne0 11222 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-icc 13391 |
This theorem is referenced by: elunitrn 13504 0elunit 13506 1elunit 13507 divelunit 13531 lincmb01cmp 13532 iccf1o 13533 rpnnen2lem12 16258 blcvx 24834 iirev 24970 iihalf2 24975 elii2 24979 iimulcl 24980 iccpnfhmeo 24990 xrhmeo 24991 lebnumii 25012 htpycc 25026 pcocn 25064 pcohtpylem 25066 pcopt 25069 pcopt2 25070 pcoass 25071 pcorevlem 25073 vitalilem2 25658 abelth2 26501 chordthmlem4 26893 leibpi 27000 jensenlem2 27046 lgamgulmlem2 27088 ttgcontlem1 28914 brbtwn2 28935 ax5seglem1 28958 ax5seglem2 28959 ax5seglem3 28961 ax5seglem5 28963 ax5seglem6 28964 ax5seglem9 28967 ax5seg 28968 axbtwnid 28969 axpaschlem 28970 axpasch 28971 axcontlem2 28995 axcontlem4 28997 axcontlem7 29000 stge0 32253 stle1 32254 strlem3a 32281 elunitge0 33860 unitdivcld 33862 xrge0iifiso 33896 xrge0iifhom 33898 resconn 35231 snmlff 35314 poimirlem29 37636 poimirlem30 37637 poimirlem31 37638 poimirlem32 37639 i0oii 48716 io1ii 48717 |
Copyright terms: Public domain | W3C validator |