| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elicc01 | Structured version Visualization version GIF version | ||
| Description: Membership in the closed real interval between 0 and 1, also called the closed unit interval. (Contributed by AV, 20-Aug-2022.) |
| Ref | Expression |
|---|---|
| elicc01 | ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11114 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1re 11112 | . 2 ⊢ 1 ∈ ℝ | |
| 3 | 1, 2 | elicc2i 13312 | 1 ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 ∈ wcel 2111 class class class wbr 5089 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 ≤ cle 11147 [,]cicc 13248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-i2m1 11074 ax-1ne0 11075 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-icc 13252 |
| This theorem is referenced by: elunitrn 13367 0elunit 13369 1elunit 13370 divelunit 13394 lincmb01cmp 13395 iccf1o 13396 rpnnen2lem12 16134 blcvx 24713 iirev 24850 iihalf2 24855 elii2 24859 iimulcl 24860 iccpnfhmeo 24870 xrhmeo 24871 lebnumii 24892 htpycc 24906 pcocn 24944 pcohtpylem 24946 pcopt 24949 pcopt2 24950 pcoass 24951 pcorevlem 24953 vitalilem2 25537 abelth2 26379 chordthmlem4 26772 leibpi 26879 jensenlem2 26925 lgamgulmlem2 26967 ttgcontlem1 28863 brbtwn2 28883 ax5seglem1 28906 ax5seglem2 28907 ax5seglem3 28909 ax5seglem5 28911 ax5seglem6 28912 ax5seglem9 28915 ax5seg 28916 axbtwnid 28917 axpaschlem 28918 axpasch 28919 axcontlem2 28943 axcontlem4 28945 axcontlem7 28948 stge0 32204 stle1 32205 strlem3a 32232 elunitge0 33912 unitdivcld 33914 xrge0iifiso 33948 xrge0iifhom 33950 resconn 35290 snmlff 35373 poimirlem29 37699 poimirlem30 37700 poimirlem31 37701 poimirlem32 37702 i0oii 49030 io1ii 49031 |
| Copyright terms: Public domain | W3C validator |