MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicc01 Structured version   Visualization version   GIF version

Theorem elicc01 13526
Description: Membership in the closed real interval between 0 and 1, also called the closed unit interval. (Contributed by AV, 20-Aug-2022.)
Assertion
Ref Expression
elicc01 (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1))

Proof of Theorem elicc01
StepHypRef Expression
1 0re 11292 . 2 0 ∈ ℝ
2 1re 11290 . 2 1 ∈ ℝ
31, 2elicc2i 13473 1 (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1087  wcel 2108   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185  cle 11325  [,]cicc 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-i2m1 11252  ax-1ne0 11253  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-icc 13414
This theorem is referenced by:  elunitrn  13527  0elunit  13529  1elunit  13530  divelunit  13554  lincmb01cmp  13555  iccf1o  13556  rpnnen2lem12  16273  blcvx  24839  iirev  24975  iihalf2  24980  elii2  24984  iimulcl  24985  iccpnfhmeo  24995  xrhmeo  24996  lebnumii  25017  htpycc  25031  pcocn  25069  pcohtpylem  25071  pcopt  25074  pcopt2  25075  pcoass  25076  pcorevlem  25078  vitalilem2  25663  abelth2  26504  chordthmlem4  26896  leibpi  27003  jensenlem2  27049  lgamgulmlem2  27091  ttgcontlem1  28917  brbtwn2  28938  ax5seglem1  28961  ax5seglem2  28962  ax5seglem3  28964  ax5seglem5  28966  ax5seglem6  28967  ax5seglem9  28970  ax5seg  28971  axbtwnid  28972  axpaschlem  28973  axpasch  28974  axcontlem2  28998  axcontlem4  29000  axcontlem7  29003  stge0  32256  stle1  32257  strlem3a  32284  elunitge0  33845  unitdivcld  33847  xrge0iifiso  33881  xrge0iifhom  33883  resconn  35214  snmlff  35297  poimirlem29  37609  poimirlem30  37610  poimirlem31  37611  poimirlem32  37612  i0oii  48599  io1ii  48600
  Copyright terms: Public domain W3C validator