Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elicc01 | Structured version Visualization version GIF version |
Description: Membership in the closed real interval between 0 and 1, also called the closed unit interval. (Contributed by AV, 20-Aug-2022.) |
Ref | Expression |
---|---|
elicc01 | ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11047 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1re 11045 | . 2 ⊢ 1 ∈ ℝ | |
3 | 1, 2 | elicc2i 13215 | 1 ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1086 ∈ wcel 2105 class class class wbr 5085 (class class class)co 7313 ℝcr 10940 0cc0 10941 1c1 10942 ≤ cle 11080 [,]cicc 13152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-i2m1 11009 ax-1ne0 11010 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-po 5519 df-so 5520 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-ov 7316 df-oprab 7317 df-mpo 7318 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-icc 13156 |
This theorem is referenced by: elunitrn 13269 0elunit 13271 1elunit 13272 divelunit 13296 lincmb01cmp 13297 iccf1o 13298 rpnnen2lem12 16003 blcvx 24032 iirev 24163 iihalf2 24167 elii2 24170 iimulcl 24171 iccpnfhmeo 24179 xrhmeo 24180 lebnumii 24200 htpycc 24214 pcocn 24251 pcohtpylem 24253 pcopt 24256 pcopt2 24257 pcoass 24258 pcorevlem 24260 vitalilem2 24844 abelth2 25672 chordthmlem4 26056 leibpi 26163 jensenlem2 26208 lgamgulmlem2 26250 ttgcontlem1 27360 brbtwn2 27381 ax5seglem1 27404 ax5seglem2 27405 ax5seglem3 27407 ax5seglem5 27409 ax5seglem6 27410 ax5seglem9 27413 ax5seg 27414 axbtwnid 27415 axpaschlem 27416 axpasch 27417 axcontlem2 27441 axcontlem4 27443 axcontlem7 27446 stge0 30694 stle1 30695 strlem3a 30722 elunitge0 31955 unitdivcld 31957 xrge0iifiso 31991 xrge0iifhom 31993 resconn 33314 snmlff 33397 poimirlem29 35866 poimirlem30 35867 poimirlem31 35868 poimirlem32 35869 i0oii 46472 io1ii 46473 |
Copyright terms: Public domain | W3C validator |