Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elicc01 | Structured version Visualization version GIF version |
Description: Membership in the closed real interval between 0 and 1, also called the closed unit interval. (Contributed by AV, 20-Aug-2022.) |
Ref | Expression |
---|---|
elicc01 | ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10977 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1re 10975 | . 2 ⊢ 1 ∈ ℝ | |
3 | 1, 2 | elicc2i 13145 | 1 ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 ℝcr 10870 0cc0 10871 1c1 10872 ≤ cle 11010 [,]cicc 13082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-i2m1 10939 ax-1ne0 10940 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-icc 13086 |
This theorem is referenced by: elunitrn 13199 0elunit 13201 1elunit 13202 divelunit 13226 lincmb01cmp 13227 iccf1o 13228 rpnnen2lem12 15934 blcvx 23961 iirev 24092 iihalf2 24096 elii2 24099 iimulcl 24100 iccpnfhmeo 24108 xrhmeo 24109 lebnumii 24129 htpycc 24143 pcocn 24180 pcohtpylem 24182 pcopt 24185 pcopt2 24186 pcoass 24187 pcorevlem 24189 vitalilem2 24773 abelth2 25601 chordthmlem4 25985 leibpi 26092 jensenlem2 26137 lgamgulmlem2 26179 ttgcontlem1 27252 brbtwn2 27273 ax5seglem1 27296 ax5seglem2 27297 ax5seglem3 27299 ax5seglem5 27301 ax5seglem6 27302 ax5seglem9 27305 ax5seg 27306 axbtwnid 27307 axpaschlem 27308 axpasch 27309 axcontlem2 27333 axcontlem4 27335 axcontlem7 27338 stge0 30586 stle1 30587 strlem3a 30614 elunitge0 31849 unitdivcld 31851 xrge0iifiso 31885 xrge0iifhom 31887 resconn 33208 snmlff 33291 poimirlem29 35806 poimirlem30 35807 poimirlem31 35808 poimirlem32 35809 i0oii 46213 io1ii 46214 |
Copyright terms: Public domain | W3C validator |