Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elicc01 | Structured version Visualization version GIF version |
Description: Membership in the closed real interval between 0 and 1, also called the closed unit interval. (Contributed by AV, 20-Aug-2022.) |
Ref | Expression |
---|---|
elicc01 | ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10908 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1re 10906 | . 2 ⊢ 1 ∈ ℝ | |
3 | 1, 2 | elicc2i 13074 | 1 ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1085 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 ≤ cle 10941 [,]cicc 13011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-i2m1 10870 ax-1ne0 10871 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-icc 13015 |
This theorem is referenced by: elunitrn 13128 0elunit 13130 1elunit 13131 divelunit 13155 lincmb01cmp 13156 iccf1o 13157 rpnnen2lem12 15862 blcvx 23867 iirev 23998 iihalf2 24002 elii2 24005 iimulcl 24006 iccpnfhmeo 24014 xrhmeo 24015 lebnumii 24035 htpycc 24049 pcocn 24086 pcohtpylem 24088 pcopt 24091 pcopt2 24092 pcoass 24093 pcorevlem 24095 vitalilem2 24678 abelth2 25506 chordthmlem4 25890 leibpi 25997 jensenlem2 26042 lgamgulmlem2 26084 ttgcontlem1 27155 brbtwn2 27176 ax5seglem1 27199 ax5seglem2 27200 ax5seglem3 27202 ax5seglem5 27204 ax5seglem6 27205 ax5seglem9 27208 ax5seg 27209 axbtwnid 27210 axpaschlem 27211 axpasch 27212 axcontlem2 27236 axcontlem4 27238 axcontlem7 27241 stge0 30487 stle1 30488 strlem3a 30515 elunitge0 31751 unitdivcld 31753 xrge0iifiso 31787 xrge0iifhom 31789 resconn 33108 snmlff 33191 poimirlem29 35733 poimirlem30 35734 poimirlem31 35735 poimirlem32 35736 i0oii 46101 io1ii 46102 |
Copyright terms: Public domain | W3C validator |