HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  stle0i Structured version   Visualization version   GIF version

Theorem stle0i 30502
Description: If a state is less than or equal to 0, it is 0. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
sto1.1 𝐴C
Assertion
Ref Expression
stle0i (𝑆 ∈ States → ((𝑆𝐴) ≤ 0 ↔ (𝑆𝐴) = 0))

Proof of Theorem stle0i
StepHypRef Expression
1 sto1.1 . . . . . 6 𝐴C
2 stge0 30487 . . . . . 6 (𝑆 ∈ States → (𝐴C → 0 ≤ (𝑆𝐴)))
31, 2mpi 20 . . . . 5 (𝑆 ∈ States → 0 ≤ (𝑆𝐴))
43anim2i 616 . . . 4 (((𝑆𝐴) ≤ 0 ∧ 𝑆 ∈ States) → ((𝑆𝐴) ≤ 0 ∧ 0 ≤ (𝑆𝐴)))
54expcom 413 . . 3 (𝑆 ∈ States → ((𝑆𝐴) ≤ 0 → ((𝑆𝐴) ≤ 0 ∧ 0 ≤ (𝑆𝐴))))
6 stcl 30479 . . . . 5 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ ℝ))
71, 6mpi 20 . . . 4 (𝑆 ∈ States → (𝑆𝐴) ∈ ℝ)
8 0re 10908 . . . 4 0 ∈ ℝ
9 letri3 10991 . . . 4 (((𝑆𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑆𝐴) = 0 ↔ ((𝑆𝐴) ≤ 0 ∧ 0 ≤ (𝑆𝐴))))
107, 8, 9sylancl 585 . . 3 (𝑆 ∈ States → ((𝑆𝐴) = 0 ↔ ((𝑆𝐴) ≤ 0 ∧ 0 ≤ (𝑆𝐴))))
115, 10sylibrd 258 . 2 (𝑆 ∈ States → ((𝑆𝐴) ≤ 0 → (𝑆𝐴) = 0))
12 0le0 12004 . . 3 0 ≤ 0
13 breq1 5073 . . 3 ((𝑆𝐴) = 0 → ((𝑆𝐴) ≤ 0 ↔ 0 ≤ 0))
1412, 13mpbiri 257 . 2 ((𝑆𝐴) = 0 → (𝑆𝐴) ≤ 0)
1511, 14impbid1 224 1 (𝑆 ∈ States → ((𝑆𝐴) ≤ 0 ↔ (𝑆𝐴) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  cr 10801  0cc0 10802  cle 10941   C cch 29192  Statescst 29225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-i2m1 10870  ax-1ne0 10871  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-hilex 29262
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-icc 13015  df-sh 29470  df-ch 29484  df-st 30474
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator