![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > stle0i | Structured version Visualization version GIF version |
Description: If a state is less than or equal to 0, it is 0. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sto1.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
stle0i | ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) ≤ 0 ↔ (𝑆‘𝐴) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sto1.1 | . . . . . 6 ⊢ 𝐴 ∈ Cℋ | |
2 | stge0 31972 | . . . . . 6 ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → 0 ≤ (𝑆‘𝐴))) | |
3 | 1, 2 | mpi 20 | . . . . 5 ⊢ (𝑆 ∈ States → 0 ≤ (𝑆‘𝐴)) |
4 | 3 | anim2i 616 | . . . 4 ⊢ (((𝑆‘𝐴) ≤ 0 ∧ 𝑆 ∈ States) → ((𝑆‘𝐴) ≤ 0 ∧ 0 ≤ (𝑆‘𝐴))) |
5 | 4 | expcom 413 | . . 3 ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) ≤ 0 → ((𝑆‘𝐴) ≤ 0 ∧ 0 ≤ (𝑆‘𝐴)))) |
6 | stcl 31964 | . . . . 5 ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ ℝ)) | |
7 | 1, 6 | mpi 20 | . . . 4 ⊢ (𝑆 ∈ States → (𝑆‘𝐴) ∈ ℝ) |
8 | 0re 11215 | . . . 4 ⊢ 0 ∈ ℝ | |
9 | letri3 11298 | . . . 4 ⊢ (((𝑆‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑆‘𝐴) = 0 ↔ ((𝑆‘𝐴) ≤ 0 ∧ 0 ≤ (𝑆‘𝐴)))) | |
10 | 7, 8, 9 | sylancl 585 | . . 3 ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) = 0 ↔ ((𝑆‘𝐴) ≤ 0 ∧ 0 ≤ (𝑆‘𝐴)))) |
11 | 5, 10 | sylibrd 259 | . 2 ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) ≤ 0 → (𝑆‘𝐴) = 0)) |
12 | 0le0 12312 | . . 3 ⊢ 0 ≤ 0 | |
13 | breq1 5142 | . . 3 ⊢ ((𝑆‘𝐴) = 0 → ((𝑆‘𝐴) ≤ 0 ↔ 0 ≤ 0)) | |
14 | 12, 13 | mpbiri 258 | . 2 ⊢ ((𝑆‘𝐴) = 0 → (𝑆‘𝐴) ≤ 0) |
15 | 11, 14 | impbid1 224 | 1 ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) ≤ 0 ↔ (𝑆‘𝐴) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 class class class wbr 5139 ‘cfv 6534 ℝcr 11106 0cc0 11107 ≤ cle 11248 Cℋ cch 30677 Statescst 30710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-i2m1 11175 ax-1ne0 11176 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-hilex 30747 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-po 5579 df-so 5580 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-icc 13332 df-sh 30955 df-ch 30969 df-st 31959 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |