Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > stle0i | Structured version Visualization version GIF version |
Description: If a state is less than or equal to 0, it is 0. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sto1.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
stle0i | ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) ≤ 0 ↔ (𝑆‘𝐴) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sto1.1 | . . . . . 6 ⊢ 𝐴 ∈ Cℋ | |
2 | stge0 30595 | . . . . . 6 ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → 0 ≤ (𝑆‘𝐴))) | |
3 | 1, 2 | mpi 20 | . . . . 5 ⊢ (𝑆 ∈ States → 0 ≤ (𝑆‘𝐴)) |
4 | 3 | anim2i 617 | . . . 4 ⊢ (((𝑆‘𝐴) ≤ 0 ∧ 𝑆 ∈ States) → ((𝑆‘𝐴) ≤ 0 ∧ 0 ≤ (𝑆‘𝐴))) |
5 | 4 | expcom 414 | . . 3 ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) ≤ 0 → ((𝑆‘𝐴) ≤ 0 ∧ 0 ≤ (𝑆‘𝐴)))) |
6 | stcl 30587 | . . . . 5 ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ ℝ)) | |
7 | 1, 6 | mpi 20 | . . . 4 ⊢ (𝑆 ∈ States → (𝑆‘𝐴) ∈ ℝ) |
8 | 0re 10988 | . . . 4 ⊢ 0 ∈ ℝ | |
9 | letri3 11071 | . . . 4 ⊢ (((𝑆‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑆‘𝐴) = 0 ↔ ((𝑆‘𝐴) ≤ 0 ∧ 0 ≤ (𝑆‘𝐴)))) | |
10 | 7, 8, 9 | sylancl 586 | . . 3 ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) = 0 ↔ ((𝑆‘𝐴) ≤ 0 ∧ 0 ≤ (𝑆‘𝐴)))) |
11 | 5, 10 | sylibrd 258 | . 2 ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) ≤ 0 → (𝑆‘𝐴) = 0)) |
12 | 0le0 12085 | . . 3 ⊢ 0 ≤ 0 | |
13 | breq1 5082 | . . 3 ⊢ ((𝑆‘𝐴) = 0 → ((𝑆‘𝐴) ≤ 0 ↔ 0 ≤ 0)) | |
14 | 12, 13 | mpbiri 257 | . 2 ⊢ ((𝑆‘𝐴) = 0 → (𝑆‘𝐴) ≤ 0) |
15 | 11, 14 | impbid1 224 | 1 ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) ≤ 0 ↔ (𝑆‘𝐴) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 class class class wbr 5079 ‘cfv 6432 ℝcr 10881 0cc0 10882 ≤ cle 11021 Cℋ cch 29300 Statescst 29333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-cnex 10938 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-i2m1 10950 ax-1ne0 10951 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-hilex 29370 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7275 df-oprab 7276 df-mpo 7277 df-er 8490 df-map 8609 df-en 8726 df-dom 8727 df-sdom 8728 df-pnf 11022 df-mnf 11023 df-xr 11024 df-ltxr 11025 df-le 11026 df-icc 13097 df-sh 29578 df-ch 29592 df-st 30582 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |