HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  stle0i Structured version   Visualization version   GIF version

Theorem stle0i 32168
Description: If a state is less than or equal to 0, it is 0. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
sto1.1 𝐴C
Assertion
Ref Expression
stle0i (𝑆 ∈ States → ((𝑆𝐴) ≤ 0 ↔ (𝑆𝐴) = 0))

Proof of Theorem stle0i
StepHypRef Expression
1 sto1.1 . . . . . 6 𝐴C
2 stge0 32153 . . . . . 6 (𝑆 ∈ States → (𝐴C → 0 ≤ (𝑆𝐴)))
31, 2mpi 20 . . . . 5 (𝑆 ∈ States → 0 ≤ (𝑆𝐴))
43anim2i 617 . . . 4 (((𝑆𝐴) ≤ 0 ∧ 𝑆 ∈ States) → ((𝑆𝐴) ≤ 0 ∧ 0 ≤ (𝑆𝐴)))
54expcom 413 . . 3 (𝑆 ∈ States → ((𝑆𝐴) ≤ 0 → ((𝑆𝐴) ≤ 0 ∧ 0 ≤ (𝑆𝐴))))
6 stcl 32145 . . . . 5 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ ℝ))
71, 6mpi 20 . . . 4 (𝑆 ∈ States → (𝑆𝐴) ∈ ℝ)
8 0re 11176 . . . 4 0 ∈ ℝ
9 letri3 11259 . . . 4 (((𝑆𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑆𝐴) = 0 ↔ ((𝑆𝐴) ≤ 0 ∧ 0 ≤ (𝑆𝐴))))
107, 8, 9sylancl 586 . . 3 (𝑆 ∈ States → ((𝑆𝐴) = 0 ↔ ((𝑆𝐴) ≤ 0 ∧ 0 ≤ (𝑆𝐴))))
115, 10sylibrd 259 . 2 (𝑆 ∈ States → ((𝑆𝐴) ≤ 0 → (𝑆𝐴) = 0))
12 0le0 12287 . . 3 0 ≤ 0
13 breq1 5110 . . 3 ((𝑆𝐴) = 0 → ((𝑆𝐴) ≤ 0 ↔ 0 ≤ 0))
1412, 13mpbiri 258 . 2 ((𝑆𝐴) = 0 → (𝑆𝐴) ≤ 0)
1511, 14impbid1 225 1 (𝑆 ∈ States → ((𝑆𝐴) ≤ 0 ↔ (𝑆𝐴) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  cr 11067  0cc0 11068  cle 11209   C cch 30858  Statescst 30891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-i2m1 11136  ax-1ne0 11137  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-hilex 30928
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-icc 13313  df-sh 31136  df-ch 31150  df-st 32140
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator