![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > stle0i | Structured version Visualization version GIF version |
Description: If a state is less than or equal to 0, it is 0. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sto1.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
stle0i | ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) ≤ 0 ↔ (𝑆‘𝐴) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sto1.1 | . . . . . 6 ⊢ 𝐴 ∈ Cℋ | |
2 | stge0 31477 | . . . . . 6 ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → 0 ≤ (𝑆‘𝐴))) | |
3 | 1, 2 | mpi 20 | . . . . 5 ⊢ (𝑆 ∈ States → 0 ≤ (𝑆‘𝐴)) |
4 | 3 | anim2i 618 | . . . 4 ⊢ (((𝑆‘𝐴) ≤ 0 ∧ 𝑆 ∈ States) → ((𝑆‘𝐴) ≤ 0 ∧ 0 ≤ (𝑆‘𝐴))) |
5 | 4 | expcom 415 | . . 3 ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) ≤ 0 → ((𝑆‘𝐴) ≤ 0 ∧ 0 ≤ (𝑆‘𝐴)))) |
6 | stcl 31469 | . . . . 5 ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ ℝ)) | |
7 | 1, 6 | mpi 20 | . . . 4 ⊢ (𝑆 ∈ States → (𝑆‘𝐴) ∈ ℝ) |
8 | 0re 11216 | . . . 4 ⊢ 0 ∈ ℝ | |
9 | letri3 11299 | . . . 4 ⊢ (((𝑆‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑆‘𝐴) = 0 ↔ ((𝑆‘𝐴) ≤ 0 ∧ 0 ≤ (𝑆‘𝐴)))) | |
10 | 7, 8, 9 | sylancl 587 | . . 3 ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) = 0 ↔ ((𝑆‘𝐴) ≤ 0 ∧ 0 ≤ (𝑆‘𝐴)))) |
11 | 5, 10 | sylibrd 259 | . 2 ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) ≤ 0 → (𝑆‘𝐴) = 0)) |
12 | 0le0 12313 | . . 3 ⊢ 0 ≤ 0 | |
13 | breq1 5152 | . . 3 ⊢ ((𝑆‘𝐴) = 0 → ((𝑆‘𝐴) ≤ 0 ↔ 0 ≤ 0)) | |
14 | 12, 13 | mpbiri 258 | . 2 ⊢ ((𝑆‘𝐴) = 0 → (𝑆‘𝐴) ≤ 0) |
15 | 11, 14 | impbid1 224 | 1 ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) ≤ 0 ↔ (𝑆‘𝐴) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 class class class wbr 5149 ‘cfv 6544 ℝcr 11109 0cc0 11110 ≤ cle 11249 Cℋ cch 30182 Statescst 30215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-i2m1 11178 ax-1ne0 11179 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-hilex 30252 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-icc 13331 df-sh 30460 df-ch 30474 df-st 31464 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |