![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > edgfndxidOLD | Structured version Visualization version GIF version |
Description: Obsolete version of edgfndxid 28846 as of 28-Oct-2024. The value of the edge function extractor is the value of the corresponding slot of the structure. (Contributed by AV, 21-Sep-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
edgfndxidOLD | β’ (πΊ β π β (.efβπΊ) = (πΊβ(.efβndx))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 β’ (πΊ β π β πΊ β π) | |
2 | df-edgf 28842 | . . 3 β’ .ef = Slot ;18 | |
3 | 1nn0 12516 | . . . 4 β’ 1 β β0 | |
4 | 8nn 12335 | . . . 4 β’ 8 β β | |
5 | 3, 4 | decnncl 12725 | . . 3 β’ ;18 β β |
6 | 1, 2, 5 | strndxid 17164 | . 2 β’ (πΊ β π β (πΊβ(.efβndx)) = (.efβπΊ)) |
7 | 6 | eqcomd 2731 | 1 β’ (πΊ β π β (.efβπΊ) = (πΊβ(.efβndx))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 βcfv 6542 1c1 11137 8c8 12301 ;cdc 12705 ndxcnx 17159 .efcedgf 28841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7418 df-om 7868 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-ltxr 11281 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-dec 12706 df-slot 17148 df-ndx 17160 df-edgf 28842 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |