![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmpt21f | Structured version Visualization version GIF version |
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmpt21.j | β’ (π β π½ β (TopOnβπ)) |
cnmpt21.k | β’ (π β πΎ β (TopOnβπ)) |
cnmpt21.a | β’ (π β (π₯ β π, π¦ β π β¦ π΄) β ((π½ Γt πΎ) Cn πΏ)) |
cnmpt21f.f | β’ (π β πΉ β (πΏ Cn π)) |
Ref | Expression |
---|---|
cnmpt21f | β’ (π β (π₯ β π, π¦ β π β¦ (πΉβπ΄)) β ((π½ Γt πΎ) Cn π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt21.j | . 2 β’ (π β π½ β (TopOnβπ)) | |
2 | cnmpt21.k | . 2 β’ (π β πΎ β (TopOnβπ)) | |
3 | cnmpt21.a | . 2 β’ (π β (π₯ β π, π¦ β π β¦ π΄) β ((π½ Γt πΎ) Cn πΏ)) | |
4 | cnmpt21f.f | . . . 4 β’ (π β πΉ β (πΏ Cn π)) | |
5 | cntop1 22751 | . . . 4 β’ (πΉ β (πΏ Cn π) β πΏ β Top) | |
6 | 4, 5 | syl 17 | . . 3 β’ (π β πΏ β Top) |
7 | toptopon2 22427 | . . 3 β’ (πΏ β Top β πΏ β (TopOnββͺ πΏ)) | |
8 | 6, 7 | sylib 217 | . 2 β’ (π β πΏ β (TopOnββͺ πΏ)) |
9 | eqid 2732 | . . . . . 6 β’ βͺ πΏ = βͺ πΏ | |
10 | eqid 2732 | . . . . . 6 β’ βͺ π = βͺ π | |
11 | 9, 10 | cnf 22757 | . . . . 5 β’ (πΉ β (πΏ Cn π) β πΉ:βͺ πΏβΆβͺ π) |
12 | 4, 11 | syl 17 | . . . 4 β’ (π β πΉ:βͺ πΏβΆβͺ π) |
13 | 12 | feqmptd 6960 | . . 3 β’ (π β πΉ = (π§ β βͺ πΏ β¦ (πΉβπ§))) |
14 | 13, 4 | eqeltrrd 2834 | . 2 β’ (π β (π§ β βͺ πΏ β¦ (πΉβπ§)) β (πΏ Cn π)) |
15 | fveq2 6891 | . 2 β’ (π§ = π΄ β (πΉβπ§) = (πΉβπ΄)) | |
16 | 1, 2, 3, 8, 14, 15 | cnmpt21 23182 | 1 β’ (π β (π₯ β π, π¦ β π β¦ (πΉβπ΄)) β ((π½ Γt πΎ) Cn π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2106 βͺ cuni 4908 β¦ cmpt 5231 βΆwf 6539 βcfv 6543 (class class class)co 7411 β cmpo 7413 Topctop 22402 TopOnctopon 22419 Cn ccn 22735 Γt ctx 23071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-map 8824 df-topgen 17391 df-top 22403 df-topon 22420 df-bases 22456 df-cn 22738 df-tx 23073 |
This theorem is referenced by: cnmpt22 23185 cnmptk2 23197 txhmeo 23314 tgpsubcn 23601 istgp2 23602 dvrcn 23695 htpyid 24500 htpyco1 24501 reparphti 24520 pcocn 24540 pcorevlem 24549 cxpcn 26260 dipcn 30011 mndpluscn 32975 cvxsconn 34303 cvmlift2lem6 34368 cvmlift2lem12 34374 gg-reparphti 35241 gg-cxpcn 35253 |
Copyright terms: Public domain | W3C validator |