| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt21f | Structured version Visualization version GIF version | ||
| Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmpt21.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmpt21.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| cnmpt21.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
| cnmpt21f.f | ⊢ (𝜑 → 𝐹 ∈ (𝐿 Cn 𝑀)) |
| Ref | Expression |
|---|---|
| cnmpt21f | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐹‘𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt21.j | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 2 | cnmpt21.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 3 | cnmpt21.a | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) | |
| 4 | cnmpt21f.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐿 Cn 𝑀)) | |
| 5 | cntop1 23178 | . . . 4 ⊢ (𝐹 ∈ (𝐿 Cn 𝑀) → 𝐿 ∈ Top) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐿 ∈ Top) |
| 7 | toptopon2 22856 | . . 3 ⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘∪ 𝐿)) | |
| 8 | 6, 7 | sylib 218 | . 2 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
| 9 | eqid 2735 | . . . . . 6 ⊢ ∪ 𝐿 = ∪ 𝐿 | |
| 10 | eqid 2735 | . . . . . 6 ⊢ ∪ 𝑀 = ∪ 𝑀 | |
| 11 | 9, 10 | cnf 23184 | . . . . 5 ⊢ (𝐹 ∈ (𝐿 Cn 𝑀) → 𝐹:∪ 𝐿⟶∪ 𝑀) |
| 12 | 4, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:∪ 𝐿⟶∪ 𝑀) |
| 13 | 12 | feqmptd 6947 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ∪ 𝐿 ↦ (𝐹‘𝑧))) |
| 14 | 13, 4 | eqeltrrd 2835 | . 2 ⊢ (𝜑 → (𝑧 ∈ ∪ 𝐿 ↦ (𝐹‘𝑧)) ∈ (𝐿 Cn 𝑀)) |
| 15 | fveq2 6876 | . 2 ⊢ (𝑧 = 𝐴 → (𝐹‘𝑧) = (𝐹‘𝐴)) | |
| 16 | 1, 2, 3, 8, 14, 15 | cnmpt21 23609 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐹‘𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∪ cuni 4883 ↦ cmpt 5201 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 Topctop 22831 TopOnctopon 22848 Cn ccn 23162 ×t ctx 23498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-map 8842 df-topgen 17457 df-top 22832 df-topon 22849 df-bases 22884 df-cn 23165 df-tx 23500 |
| This theorem is referenced by: cnmpt22 23612 cnmptk2 23624 txhmeo 23741 tgpsubcn 24028 istgp2 24029 dvrcn 24122 htpyid 24927 htpyco1 24928 reparphti 24947 reparphtiOLD 24948 pcocn 24968 pcorevlem 24977 cxpcn 26706 cxpcnOLD 26707 dipcn 30701 mndpluscn 33957 cvxsconn 35265 cvmlift2lem6 35330 cvmlift2lem12 35336 |
| Copyright terms: Public domain | W3C validator |