MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt21f Structured version   Visualization version   GIF version

Theorem cnmpt21f 23696
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt21.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
cnmpt21f.f (𝜑𝐹 ∈ (𝐿 Cn 𝑀))
Assertion
Ref Expression
cnmpt21f (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐹𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑀,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt21f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cnmpt21.j . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 cnmpt21.k . 2 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 cnmpt21.a . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
4 cnmpt21f.f . . . 4 (𝜑𝐹 ∈ (𝐿 Cn 𝑀))
5 cntop1 23264 . . . 4 (𝐹 ∈ (𝐿 Cn 𝑀) → 𝐿 ∈ Top)
64, 5syl 17 . . 3 (𝜑𝐿 ∈ Top)
7 toptopon2 22940 . . 3 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
86, 7sylib 218 . 2 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
9 eqid 2735 . . . . . 6 𝐿 = 𝐿
10 eqid 2735 . . . . . 6 𝑀 = 𝑀
119, 10cnf 23270 . . . . 5 (𝐹 ∈ (𝐿 Cn 𝑀) → 𝐹: 𝐿 𝑀)
124, 11syl 17 . . . 4 (𝜑𝐹: 𝐿 𝑀)
1312feqmptd 6977 . . 3 (𝜑𝐹 = (𝑧 𝐿 ↦ (𝐹𝑧)))
1413, 4eqeltrrd 2840 . 2 (𝜑 → (𝑧 𝐿 ↦ (𝐹𝑧)) ∈ (𝐿 Cn 𝑀))
15 fveq2 6907 . 2 (𝑧 = 𝐴 → (𝐹𝑧) = (𝐹𝐴))
161, 2, 3, 8, 14, 15cnmpt21 23695 1 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐹𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   cuni 4912  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433  Topctop 22915  TopOnctopon 22932   Cn ccn 23248   ×t ctx 23584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-map 8867  df-topgen 17490  df-top 22916  df-topon 22933  df-bases 22969  df-cn 23251  df-tx 23586
This theorem is referenced by:  cnmpt22  23698  cnmptk2  23710  txhmeo  23827  tgpsubcn  24114  istgp2  24115  dvrcn  24208  htpyid  25023  htpyco1  25024  reparphti  25043  reparphtiOLD  25044  pcocn  25064  pcorevlem  25073  cxpcn  26802  cxpcnOLD  26803  dipcn  30749  mndpluscn  33887  cvxsconn  35228  cvmlift2lem6  35293  cvmlift2lem12  35299
  Copyright terms: Public domain W3C validator