Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnmpt21f | Structured version Visualization version GIF version |
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmpt21.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmpt21.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
cnmpt21.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
cnmpt21f.f | ⊢ (𝜑 → 𝐹 ∈ (𝐿 Cn 𝑀)) |
Ref | Expression |
---|---|
cnmpt21f | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐹‘𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt21.j | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
2 | cnmpt21.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
3 | cnmpt21.a | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) | |
4 | cnmpt21f.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐿 Cn 𝑀)) | |
5 | cntop1 22389 | . . . 4 ⊢ (𝐹 ∈ (𝐿 Cn 𝑀) → 𝐿 ∈ Top) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐿 ∈ Top) |
7 | toptopon2 22065 | . . 3 ⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘∪ 𝐿)) | |
8 | 6, 7 | sylib 217 | . 2 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
9 | eqid 2740 | . . . . . 6 ⊢ ∪ 𝐿 = ∪ 𝐿 | |
10 | eqid 2740 | . . . . . 6 ⊢ ∪ 𝑀 = ∪ 𝑀 | |
11 | 9, 10 | cnf 22395 | . . . . 5 ⊢ (𝐹 ∈ (𝐿 Cn 𝑀) → 𝐹:∪ 𝐿⟶∪ 𝑀) |
12 | 4, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:∪ 𝐿⟶∪ 𝑀) |
13 | 12 | feqmptd 6834 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ∪ 𝐿 ↦ (𝐹‘𝑧))) |
14 | 13, 4 | eqeltrrd 2842 | . 2 ⊢ (𝜑 → (𝑧 ∈ ∪ 𝐿 ↦ (𝐹‘𝑧)) ∈ (𝐿 Cn 𝑀)) |
15 | fveq2 6771 | . 2 ⊢ (𝑧 = 𝐴 → (𝐹‘𝑧) = (𝐹‘𝐴)) | |
16 | 1, 2, 3, 8, 14, 15 | cnmpt21 22820 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐹‘𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 ∪ cuni 4845 ↦ cmpt 5162 ⟶wf 6428 ‘cfv 6432 (class class class)co 7271 ∈ cmpo 7273 Topctop 22040 TopOnctopon 22057 Cn ccn 22373 ×t ctx 22709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-1st 7824 df-2nd 7825 df-map 8600 df-topgen 17152 df-top 22041 df-topon 22058 df-bases 22094 df-cn 22376 df-tx 22711 |
This theorem is referenced by: cnmpt22 22823 cnmptk2 22835 txhmeo 22952 tgpsubcn 23239 istgp2 23240 dvrcn 23333 htpyid 24138 htpyco1 24139 reparphti 24158 pcocn 24178 pcorevlem 24187 cxpcn 25896 dipcn 29078 mndpluscn 31872 cvxsconn 33201 cvmlift2lem6 33266 cvmlift2lem12 33272 |
Copyright terms: Public domain | W3C validator |