MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt21f Structured version   Visualization version   GIF version

Theorem cnmpt21f 23701
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt21.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
cnmpt21f.f (𝜑𝐹 ∈ (𝐿 Cn 𝑀))
Assertion
Ref Expression
cnmpt21f (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐹𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑀,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt21f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cnmpt21.j . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 cnmpt21.k . 2 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 cnmpt21.a . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
4 cnmpt21f.f . . . 4 (𝜑𝐹 ∈ (𝐿 Cn 𝑀))
5 cntop1 23269 . . . 4 (𝐹 ∈ (𝐿 Cn 𝑀) → 𝐿 ∈ Top)
64, 5syl 17 . . 3 (𝜑𝐿 ∈ Top)
7 toptopon2 22945 . . 3 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
86, 7sylib 218 . 2 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
9 eqid 2740 . . . . . 6 𝐿 = 𝐿
10 eqid 2740 . . . . . 6 𝑀 = 𝑀
119, 10cnf 23275 . . . . 5 (𝐹 ∈ (𝐿 Cn 𝑀) → 𝐹: 𝐿 𝑀)
124, 11syl 17 . . . 4 (𝜑𝐹: 𝐿 𝑀)
1312feqmptd 6990 . . 3 (𝜑𝐹 = (𝑧 𝐿 ↦ (𝐹𝑧)))
1413, 4eqeltrrd 2845 . 2 (𝜑 → (𝑧 𝐿 ↦ (𝐹𝑧)) ∈ (𝐿 Cn 𝑀))
15 fveq2 6920 . 2 (𝑧 = 𝐴 → (𝐹𝑧) = (𝐹𝐴))
161, 2, 3, 8, 14, 15cnmpt21 23700 1 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐹𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   cuni 4931  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  Topctop 22920  TopOnctopon 22937   Cn ccn 23253   ×t ctx 23589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974  df-cn 23256  df-tx 23591
This theorem is referenced by:  cnmpt22  23703  cnmptk2  23715  txhmeo  23832  tgpsubcn  24119  istgp2  24120  dvrcn  24213  htpyid  25028  htpyco1  25029  reparphti  25048  reparphtiOLD  25049  pcocn  25069  pcorevlem  25078  cxpcn  26805  cxpcnOLD  26806  dipcn  30752  mndpluscn  33872  cvxsconn  35211  cvmlift2lem6  35276  cvmlift2lem12  35282
  Copyright terms: Public domain W3C validator