![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trlne | Structured version Visualization version GIF version |
Description: The trace of a lattice translation is not equal to any atom not under the fiducial co-atom 𝑊. Part of proof of Lemma C in [Crawley] p. 112. (Contributed by NM, 25-May-2012.) |
Ref | Expression |
---|---|
trlne.l | ⊢ ≤ = (le‘𝐾) |
trlne.a | ⊢ 𝐴 = (Atoms‘𝐾) |
trlne.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trlne.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trlne.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trlne | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ≠ (𝑅‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3r 1202 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ¬ 𝑃 ≤ 𝑊) | |
2 | trlne.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
3 | trlne.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | trlne.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | trlne.r | . . . . . 6 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
6 | 2, 3, 4, 5 | trlle 40145 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ≤ 𝑊) |
7 | 6 | 3adant3 1132 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐹) ≤ 𝑊) |
8 | breq1 5179 | . . . 4 ⊢ (𝑃 = (𝑅‘𝐹) → (𝑃 ≤ 𝑊 ↔ (𝑅‘𝐹) ≤ 𝑊)) | |
9 | 7, 8 | syl5ibrcom 247 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 = (𝑅‘𝐹) → 𝑃 ≤ 𝑊)) |
10 | 9 | necon3bd 2956 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (¬ 𝑃 ≤ 𝑊 → 𝑃 ≠ (𝑅‘𝐹))) |
11 | 1, 10 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ≠ (𝑅‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2103 ≠ wne 2942 class class class wbr 5176 ‘cfv 6579 lecple 17324 Atomscatm 39223 HLchlt 39310 LHypclh 39945 LTrncltrn 40062 trLctrl 40119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5313 ax-sep 5327 ax-nul 5334 ax-pow 5393 ax-pr 5457 ax-un 7775 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-rmo 3384 df-reu 3385 df-rab 3440 df-v 3486 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4354 df-if 4555 df-pw 4630 df-sn 4655 df-pr 4657 df-op 4661 df-uni 4938 df-iun 5027 df-br 5177 df-opab 5239 df-mpt 5260 df-id 5604 df-xp 5712 df-rel 5713 df-cnv 5714 df-co 5715 df-dm 5716 df-rn 5717 df-res 5718 df-ima 5719 df-iota 6531 df-fun 6581 df-fn 6582 df-f 6583 df-f1 6584 df-fo 6585 df-f1o 6586 df-fv 6587 df-riota 7410 df-ov 7457 df-oprab 7458 df-mpo 7459 df-map 8891 df-proset 18371 df-poset 18389 df-plt 18406 df-lub 18422 df-glb 18423 df-join 18424 df-meet 18425 df-p0 18501 df-p1 18502 df-lat 18508 df-oposet 39136 df-ol 39138 df-oml 39139 df-covers 39226 df-ats 39227 df-atl 39258 df-cvlat 39282 df-hlat 39311 df-lhyp 39949 df-laut 39950 df-ldil 40065 df-ltrn 40066 df-trl 40120 |
This theorem is referenced by: trlnle 40147 |
Copyright terms: Public domain | W3C validator |