Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlle Structured version   Visualization version   GIF version

Theorem trlle 39787
Description: The trace of a lattice translation is less than the fiducial co-atom 𝑊. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
trlle.l = (le‘𝐾)
trlle.h 𝐻 = (LHyp‘𝐾)
trlle.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlle.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlle (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)

Proof of Theorem trlle
StepHypRef Expression
1 trlle.l . . . . 5 = (le‘𝐾)
2 eqid 2725 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
3 eqid 2725 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
4 trlle.h . . . . 5 𝐻 = (LHyp‘𝐾)
51, 2, 3, 4lhpocnel 39621 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
65adantr 479 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
7 eqid 2725 . . . 4 (join‘𝐾) = (join‘𝐾)
8 eqid 2725 . . . 4 (meet‘𝐾) = (meet‘𝐾)
9 trlle.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 trlle.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
111, 7, 8, 3, 4, 9, 10trlval2 39766 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊)) → (𝑅𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊))
126, 11mpd3an3 1458 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊))
13 hllat 38965 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1413ad2antrr 724 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐾 ∈ Lat)
15 hlop 38964 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
1615ad2antrr 724 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐾 ∈ OP)
17 eqid 2725 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1817, 4lhpbase 39601 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1918ad2antlr 725 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝑊 ∈ (Base‘𝐾))
2017, 2opoccl 38796 . . . . 5 ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
2116, 19, 20syl2anc 582 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
2217, 4, 9ltrncl 39728 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
2321, 22mpd3an3 1458 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
2417, 7latjcl 18434 . . . 4 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾) ∧ (𝐹‘((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ (Base‘𝐾))
2514, 21, 23, 24syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ (Base‘𝐾))
2617, 1, 8latmle2 18460 . . 3 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) 𝑊)
2714, 25, 19, 26syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) 𝑊)
2812, 27eqbrtrd 5171 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098   class class class wbr 5149  cfv 6549  (class class class)co 7419  Basecbs 17183  lecple 17243  occoc 17244  joincjn 18306  meetcmee 18307  Latclat 18426  OPcops 38774  Atomscatm 38865  HLchlt 38952  LHypclh 39587  LTrncltrn 39704  trLctrl 39761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-map 8847  df-proset 18290  df-poset 18308  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-p1 18421  df-lat 18427  df-oposet 38778  df-ol 38780  df-oml 38781  df-covers 38868  df-ats 38869  df-atl 38900  df-cvlat 38924  df-hlat 38953  df-lhyp 39591  df-laut 39592  df-ldil 39707  df-ltrn 39708  df-trl 39762
This theorem is referenced by:  trlne  39788  cdlemc5  39798  cdlemg6c  40223  cdlemg10c  40242  cdlemg10  40244  cdlemg17dALTN  40267  cdlemg27a  40295  cdlemg31b0N  40297  cdlemg31b0a  40298  cdlemg27b  40299  cdlemg31c  40302  cdlemg35  40316  cdlemh2  40419  cdlemh  40420  cdlemk3  40436  cdlemk9  40442  cdlemk9bN  40443  cdlemk10  40446  cdlemk12  40453  cdlemk14  40457  cdlemk12u  40475  cdlemkfid1N  40524  cdlemk47  40552  dia1N  40656  dia1dim  40664  dia2dimlem1  40667  dia2dimlem10  40676  dib1dim  40768  cdlemn2a  40799  dih1dimb  40843  dihopelvalcpre  40851  dihwN  40892  dihglblem5apreN  40894  dih1dimatlem  40932
  Copyright terms: Public domain W3C validator