| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trlle | Structured version Visualization version GIF version | ||
| Description: The trace of a lattice translation is less than the fiducial co-atom 𝑊. (Contributed by NM, 25-May-2012.) |
| Ref | Expression |
|---|---|
| trlle.l | ⊢ ≤ = (le‘𝐾) |
| trlle.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| trlle.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| trlle.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| trlle | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ≤ 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlle.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 3 | eqid 2731 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 4 | trlle.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | 1, 2, 3, 4 | lhpocnel 40056 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
| 6 | 5 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
| 7 | eqid 2731 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 8 | eqid 2731 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 9 | trlle.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 10 | trlle.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 11 | 1, 7, 8, 3, 4, 9, 10 | trlval2 40201 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) → (𝑅‘𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊)) |
| 12 | 6, 11 | mpd3an3 1464 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊)) |
| 13 | hllat 39401 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 14 | 13 | ad2antrr 726 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ Lat) |
| 15 | hlop 39400 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 16 | 15 | ad2antrr 726 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ OP) |
| 17 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 18 | 17, 4 | lhpbase 40036 | . . . . . 6 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 19 | 18 | ad2antlr 727 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝑊 ∈ (Base‘𝐾)) |
| 20 | 17, 2 | opoccl 39232 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) |
| 21 | 16, 19, 20 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) |
| 22 | 17, 4, 9 | ltrncl 40163 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾)) |
| 23 | 21, 22 | mpd3an3 1464 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾)) |
| 24 | 17, 7 | latjcl 18342 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾) ∧ (𝐹‘((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ (Base‘𝐾)) |
| 25 | 14, 21, 23, 24 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ (Base‘𝐾)) |
| 26 | 17, 1, 8 | latmle2 18368 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ≤ 𝑊) |
| 27 | 14, 25, 19, 26 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ≤ 𝑊) |
| 28 | 12, 27 | eqbrtrd 5113 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ≤ 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 lecple 17165 occoc 17166 joincjn 18214 meetcmee 18215 Latclat 18334 OPcops 39210 Atomscatm 39301 HLchlt 39388 LHypclh 40022 LTrncltrn 40139 trLctrl 40196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-proset 18197 df-poset 18216 df-plt 18231 df-lub 18247 df-glb 18248 df-join 18249 df-meet 18250 df-p0 18326 df-p1 18327 df-lat 18335 df-oposet 39214 df-ol 39216 df-oml 39217 df-covers 39304 df-ats 39305 df-atl 39336 df-cvlat 39360 df-hlat 39389 df-lhyp 40026 df-laut 40027 df-ldil 40142 df-ltrn 40143 df-trl 40197 |
| This theorem is referenced by: trlne 40223 cdlemc5 40233 cdlemg6c 40658 cdlemg10c 40677 cdlemg10 40679 cdlemg17dALTN 40702 cdlemg27a 40730 cdlemg31b0N 40732 cdlemg31b0a 40733 cdlemg27b 40734 cdlemg31c 40737 cdlemg35 40751 cdlemh2 40854 cdlemh 40855 cdlemk3 40871 cdlemk9 40877 cdlemk9bN 40878 cdlemk10 40881 cdlemk12 40888 cdlemk14 40892 cdlemk12u 40910 cdlemkfid1N 40959 cdlemk47 40987 dia1N 41091 dia1dim 41099 dia2dimlem1 41102 dia2dimlem10 41111 dib1dim 41203 cdlemn2a 41234 dih1dimb 41278 dihopelvalcpre 41286 dihwN 41327 dihglblem5apreN 41329 dih1dimatlem 41367 |
| Copyright terms: Public domain | W3C validator |