Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlle Structured version   Visualization version   GIF version

Theorem trlle 39043
Description: The trace of a lattice translation is less than the fiducial co-atom π‘Š. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
trlle.l ≀ = (leβ€˜πΎ)
trlle.h 𝐻 = (LHypβ€˜πΎ)
trlle.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
trlle.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
trlle (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜πΉ) ≀ π‘Š)

Proof of Theorem trlle
StepHypRef Expression
1 trlle.l . . . . 5 ≀ = (leβ€˜πΎ)
2 eqid 2732 . . . . 5 (ocβ€˜πΎ) = (ocβ€˜πΎ)
3 eqid 2732 . . . . 5 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
4 trlle.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
51, 2, 3, 4lhpocnel 38877 . . . 4 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (((ocβ€˜πΎ)β€˜π‘Š) ∈ (Atomsβ€˜πΎ) ∧ Β¬ ((ocβ€˜πΎ)β€˜π‘Š) ≀ π‘Š))
65adantr 481 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (((ocβ€˜πΎ)β€˜π‘Š) ∈ (Atomsβ€˜πΎ) ∧ Β¬ ((ocβ€˜πΎ)β€˜π‘Š) ≀ π‘Š))
7 eqid 2732 . . . 4 (joinβ€˜πΎ) = (joinβ€˜πΎ)
8 eqid 2732 . . . 4 (meetβ€˜πΎ) = (meetβ€˜πΎ)
9 trlle.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
10 trlle.r . . . 4 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
111, 7, 8, 3, 4, 9, 10trlval2 39022 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (((ocβ€˜πΎ)β€˜π‘Š) ∈ (Atomsβ€˜πΎ) ∧ Β¬ ((ocβ€˜πΎ)β€˜π‘Š) ≀ π‘Š)) β†’ (π‘…β€˜πΉ) = ((((ocβ€˜πΎ)β€˜π‘Š)(joinβ€˜πΎ)(πΉβ€˜((ocβ€˜πΎ)β€˜π‘Š)))(meetβ€˜πΎ)π‘Š))
126, 11mpd3an3 1462 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜πΉ) = ((((ocβ€˜πΎ)β€˜π‘Š)(joinβ€˜πΎ)(πΉβ€˜((ocβ€˜πΎ)β€˜π‘Š)))(meetβ€˜πΎ)π‘Š))
13 hllat 38221 . . . 4 (𝐾 ∈ HL β†’ 𝐾 ∈ Lat)
1413ad2antrr 724 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ 𝐾 ∈ Lat)
15 hlop 38220 . . . . . 6 (𝐾 ∈ HL β†’ 𝐾 ∈ OP)
1615ad2antrr 724 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ 𝐾 ∈ OP)
17 eqid 2732 . . . . . . 7 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1817, 4lhpbase 38857 . . . . . 6 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
1918ad2antlr 725 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ π‘Š ∈ (Baseβ€˜πΎ))
2017, 2opoccl 38052 . . . . 5 ((𝐾 ∈ OP ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((ocβ€˜πΎ)β€˜π‘Š) ∈ (Baseβ€˜πΎ))
2116, 19, 20syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ ((ocβ€˜πΎ)β€˜π‘Š) ∈ (Baseβ€˜πΎ))
2217, 4, 9ltrncl 38984 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((ocβ€˜πΎ)β€˜π‘Š) ∈ (Baseβ€˜πΎ)) β†’ (πΉβ€˜((ocβ€˜πΎ)β€˜π‘Š)) ∈ (Baseβ€˜πΎ))
2321, 22mpd3an3 1462 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (πΉβ€˜((ocβ€˜πΎ)β€˜π‘Š)) ∈ (Baseβ€˜πΎ))
2417, 7latjcl 18388 . . . 4 ((𝐾 ∈ Lat ∧ ((ocβ€˜πΎ)β€˜π‘Š) ∈ (Baseβ€˜πΎ) ∧ (πΉβ€˜((ocβ€˜πΎ)β€˜π‘Š)) ∈ (Baseβ€˜πΎ)) β†’ (((ocβ€˜πΎ)β€˜π‘Š)(joinβ€˜πΎ)(πΉβ€˜((ocβ€˜πΎ)β€˜π‘Š))) ∈ (Baseβ€˜πΎ))
2514, 21, 23, 24syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (((ocβ€˜πΎ)β€˜π‘Š)(joinβ€˜πΎ)(πΉβ€˜((ocβ€˜πΎ)β€˜π‘Š))) ∈ (Baseβ€˜πΎ))
2617, 1, 8latmle2 18414 . . 3 ((𝐾 ∈ Lat ∧ (((ocβ€˜πΎ)β€˜π‘Š)(joinβ€˜πΎ)(πΉβ€˜((ocβ€˜πΎ)β€˜π‘Š))) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((((ocβ€˜πΎ)β€˜π‘Š)(joinβ€˜πΎ)(πΉβ€˜((ocβ€˜πΎ)β€˜π‘Š)))(meetβ€˜πΎ)π‘Š) ≀ π‘Š)
2714, 25, 19, 26syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ ((((ocβ€˜πΎ)β€˜π‘Š)(joinβ€˜πΎ)(πΉβ€˜((ocβ€˜πΎ)β€˜π‘Š)))(meetβ€˜πΎ)π‘Š) ≀ π‘Š)
2812, 27eqbrtrd 5169 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜πΉ) ≀ π‘Š)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  occoc 17201  joincjn 18260  meetcmee 18261  Latclat 18380  OPcops 38030  Atomscatm 38121  HLchlt 38208  LHypclh 38843  LTrncltrn 38960  trLctrl 39017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-lhyp 38847  df-laut 38848  df-ldil 38963  df-ltrn 38964  df-trl 39018
This theorem is referenced by:  trlne  39044  cdlemc5  39054  cdlemg6c  39479  cdlemg10c  39498  cdlemg10  39500  cdlemg17dALTN  39523  cdlemg27a  39551  cdlemg31b0N  39553  cdlemg31b0a  39554  cdlemg27b  39555  cdlemg31c  39558  cdlemg35  39572  cdlemh2  39675  cdlemh  39676  cdlemk3  39692  cdlemk9  39698  cdlemk9bN  39699  cdlemk10  39702  cdlemk12  39709  cdlemk14  39713  cdlemk12u  39731  cdlemkfid1N  39780  cdlemk47  39808  dia1N  39912  dia1dim  39920  dia2dimlem1  39923  dia2dimlem10  39932  dib1dim  40024  cdlemn2a  40055  dih1dimb  40099  dihopelvalcpre  40107  dihwN  40148  dihglblem5apreN  40150  dih1dimatlem  40188
  Copyright terms: Public domain W3C validator