| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trlle | Structured version Visualization version GIF version | ||
| Description: The trace of a lattice translation is less than the fiducial co-atom 𝑊. (Contributed by NM, 25-May-2012.) |
| Ref | Expression |
|---|---|
| trlle.l | ⊢ ≤ = (le‘𝐾) |
| trlle.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| trlle.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| trlle.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| trlle | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ≤ 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlle.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 4 | trlle.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | 1, 2, 3, 4 | lhpocnel 40012 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
| 6 | 5 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
| 7 | eqid 2729 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 8 | eqid 2729 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 9 | trlle.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 10 | trlle.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 11 | 1, 7, 8, 3, 4, 9, 10 | trlval2 40157 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) → (𝑅‘𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊)) |
| 12 | 6, 11 | mpd3an3 1464 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊)) |
| 13 | hllat 39356 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 14 | 13 | ad2antrr 726 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ Lat) |
| 15 | hlop 39355 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 16 | 15 | ad2antrr 726 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ OP) |
| 17 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 18 | 17, 4 | lhpbase 39992 | . . . . . 6 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 19 | 18 | ad2antlr 727 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝑊 ∈ (Base‘𝐾)) |
| 20 | 17, 2 | opoccl 39187 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) |
| 21 | 16, 19, 20 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) |
| 22 | 17, 4, 9 | ltrncl 40119 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾)) |
| 23 | 21, 22 | mpd3an3 1464 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾)) |
| 24 | 17, 7 | latjcl 18398 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾) ∧ (𝐹‘((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ (Base‘𝐾)) |
| 25 | 14, 21, 23, 24 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ (Base‘𝐾)) |
| 26 | 17, 1, 8 | latmle2 18424 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ≤ 𝑊) |
| 27 | 14, 25, 19, 26 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ≤ 𝑊) |
| 28 | 12, 27 | eqbrtrd 5129 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ≤ 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 lecple 17227 occoc 17228 joincjn 18272 meetcmee 18273 Latclat 18390 OPcops 39165 Atomscatm 39256 HLchlt 39343 LHypclh 39978 LTrncltrn 40095 trLctrl 40152 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-lhyp 39982 df-laut 39983 df-ldil 40098 df-ltrn 40099 df-trl 40153 |
| This theorem is referenced by: trlne 40179 cdlemc5 40189 cdlemg6c 40614 cdlemg10c 40633 cdlemg10 40635 cdlemg17dALTN 40658 cdlemg27a 40686 cdlemg31b0N 40688 cdlemg31b0a 40689 cdlemg27b 40690 cdlemg31c 40693 cdlemg35 40707 cdlemh2 40810 cdlemh 40811 cdlemk3 40827 cdlemk9 40833 cdlemk9bN 40834 cdlemk10 40837 cdlemk12 40844 cdlemk14 40848 cdlemk12u 40866 cdlemkfid1N 40915 cdlemk47 40943 dia1N 41047 dia1dim 41055 dia2dimlem1 41058 dia2dimlem10 41067 dib1dim 41159 cdlemn2a 41190 dih1dimb 41234 dihopelvalcpre 41242 dihwN 41283 dihglblem5apreN 41285 dih1dimatlem 41323 |
| Copyright terms: Public domain | W3C validator |