Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > trlle | Structured version Visualization version GIF version |
Description: The trace of a lattice translation is less than the fiducial co-atom 𝑊. (Contributed by NM, 25-May-2012.) |
Ref | Expression |
---|---|
trlle.l | ⊢ ≤ = (le‘𝐾) |
trlle.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trlle.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trlle.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trlle | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ≤ 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlle.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
2 | eqid 2738 | . . . . 5 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
3 | eqid 2738 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
4 | trlle.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | 1, 2, 3, 4 | lhpocnel 38032 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
6 | 5 | adantr 481 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
7 | eqid 2738 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
8 | eqid 2738 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
9 | trlle.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
10 | trlle.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
11 | 1, 7, 8, 3, 4, 9, 10 | trlval2 38177 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) → (𝑅‘𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊)) |
12 | 6, 11 | mpd3an3 1461 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊)) |
13 | hllat 37377 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
14 | 13 | ad2antrr 723 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ Lat) |
15 | hlop 37376 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
16 | 15 | ad2antrr 723 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ OP) |
17 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
18 | 17, 4 | lhpbase 38012 | . . . . . 6 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
19 | 18 | ad2antlr 724 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝑊 ∈ (Base‘𝐾)) |
20 | 17, 2 | opoccl 37208 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) |
21 | 16, 19, 20 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) |
22 | 17, 4, 9 | ltrncl 38139 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾)) |
23 | 21, 22 | mpd3an3 1461 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾)) |
24 | 17, 7 | latjcl 18157 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾) ∧ (𝐹‘((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ (Base‘𝐾)) |
25 | 14, 21, 23, 24 | syl3anc 1370 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ (Base‘𝐾)) |
26 | 17, 1, 8 | latmle2 18183 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ≤ 𝑊) |
27 | 14, 25, 19, 26 | syl3anc 1370 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ≤ 𝑊) |
28 | 12, 27 | eqbrtrd 5096 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ≤ 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 lecple 16969 occoc 16970 joincjn 18029 meetcmee 18030 Latclat 18149 OPcops 37186 Atomscatm 37277 HLchlt 37364 LHypclh 37998 LTrncltrn 38115 trLctrl 38172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 df-trl 38173 |
This theorem is referenced by: trlne 38199 cdlemc5 38209 cdlemg6c 38634 cdlemg10c 38653 cdlemg10 38655 cdlemg17dALTN 38678 cdlemg27a 38706 cdlemg31b0N 38708 cdlemg31b0a 38709 cdlemg27b 38710 cdlemg31c 38713 cdlemg35 38727 cdlemh2 38830 cdlemh 38831 cdlemk3 38847 cdlemk9 38853 cdlemk9bN 38854 cdlemk10 38857 cdlemk12 38864 cdlemk14 38868 cdlemk12u 38886 cdlemkfid1N 38935 cdlemk47 38963 dia1N 39067 dia1dim 39075 dia2dimlem1 39078 dia2dimlem10 39087 dib1dim 39179 cdlemn2a 39210 dih1dimb 39254 dihopelvalcpre 39262 dihwN 39303 dihglblem5apreN 39305 dih1dimatlem 39343 |
Copyright terms: Public domain | W3C validator |