Step | Hyp | Ref
| Expression |
1 | | elex 3440 |
. . 3
⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) |
2 | | difss 4062 |
. . . . . . . . . . . 12
⊢ (𝐴 ∖ (𝐹 “ 𝑥)) ⊆ 𝐴 |
3 | | elpw2g 5263 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ V → ((𝐴 ∖ (𝐹 “ 𝑥)) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ (𝐹 “ 𝑥)) ⊆ 𝐴)) |
4 | 2, 3 | mpbiri 257 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → (𝐴 ∖ (𝐹 “ 𝑥)) ∈ 𝒫 𝐴) |
5 | | neeq1 3005 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐴 ∖ (𝐹 “ 𝑥)) → (𝑦 ≠ ∅ ↔ (𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅)) |
6 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝐴 ∖ (𝐹 “ 𝑥)) → (𝑔‘𝑦) = (𝑔‘(𝐴 ∖ (𝐹 “ 𝑥)))) |
7 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝐴 ∖ (𝐹 “ 𝑥)) → 𝑦 = (𝐴 ∖ (𝐹 “ 𝑥))) |
8 | 6, 7 | eleq12d 2833 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐴 ∖ (𝐹 “ 𝑥)) → ((𝑔‘𝑦) ∈ 𝑦 ↔ (𝑔‘(𝐴 ∖ (𝐹 “ 𝑥))) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) |
9 | 5, 8 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐴 ∖ (𝐹 “ 𝑥)) → ((𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ↔ ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝑔‘(𝐴 ∖ (𝐹 “ 𝑥))) ∈ (𝐴 ∖ (𝐹 “ 𝑥))))) |
10 | 9 | rspcv 3547 |
. . . . . . . . . . 11
⊢ ((𝐴 ∖ (𝐹 “ 𝑥)) ∈ 𝒫 𝐴 → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) → ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝑔‘(𝐴 ∖ (𝐹 “ 𝑥))) ∈ (𝐴 ∖ (𝐹 “ 𝑥))))) |
11 | 4, 10 | syl 17 |
. . . . . . . . . 10
⊢ (𝐴 ∈ V → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) → ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝑔‘(𝐴 ∖ (𝐹 “ 𝑥))) ∈ (𝐴 ∖ (𝐹 “ 𝑥))))) |
12 | 11 | 3imp 1109 |
. . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ (𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅) → (𝑔‘(𝐴 ∖ (𝐹 “ 𝑥))) ∈ (𝐴 ∖ (𝐹 “ 𝑥))) |
13 | | dfac8alem.2 |
. . . . . . . . . . . 12
⊢ 𝐹 = recs(𝐺) |
14 | 13 | tfr2 8200 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ On → (𝐹‘𝑥) = (𝐺‘(𝐹 ↾ 𝑥))) |
15 | 13 | tfr1 8199 |
. . . . . . . . . . . . . 14
⊢ 𝐹 Fn On |
16 | | fnfun 6517 |
. . . . . . . . . . . . . 14
⊢ (𝐹 Fn On → Fun 𝐹) |
17 | 15, 16 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ Fun 𝐹 |
18 | | vex 3426 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
19 | | resfunexg 7073 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ V) → (𝐹 ↾ 𝑥) ∈ V) |
20 | 17, 18, 19 | mp2an 688 |
. . . . . . . . . . . 12
⊢ (𝐹 ↾ 𝑥) ∈ V |
21 | | rneq 5834 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝐹 ↾ 𝑥) → ran 𝑓 = ran (𝐹 ↾ 𝑥)) |
22 | | df-ima 5593 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 “ 𝑥) = ran (𝐹 ↾ 𝑥) |
23 | 21, 22 | eqtr4di 2797 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝐹 ↾ 𝑥) → ran 𝑓 = (𝐹 “ 𝑥)) |
24 | 23 | difeq2d 4053 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝐹 ↾ 𝑥) → (𝐴 ∖ ran 𝑓) = (𝐴 ∖ (𝐹 “ 𝑥))) |
25 | 24 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝐹 ↾ 𝑥) → (𝑔‘(𝐴 ∖ ran 𝑓)) = (𝑔‘(𝐴 ∖ (𝐹 “ 𝑥)))) |
26 | | dfac8alem.3 |
. . . . . . . . . . . . 13
⊢ 𝐺 = (𝑓 ∈ V ↦ (𝑔‘(𝐴 ∖ ran 𝑓))) |
27 | | fvex 6769 |
. . . . . . . . . . . . 13
⊢ (𝑔‘(𝐴 ∖ (𝐹 “ 𝑥))) ∈ V |
28 | 25, 26, 27 | fvmpt 6857 |
. . . . . . . . . . . 12
⊢ ((𝐹 ↾ 𝑥) ∈ V → (𝐺‘(𝐹 ↾ 𝑥)) = (𝑔‘(𝐴 ∖ (𝐹 “ 𝑥)))) |
29 | 20, 28 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝐺‘(𝐹 ↾ 𝑥)) = (𝑔‘(𝐴 ∖ (𝐹 “ 𝑥))) |
30 | 14, 29 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (𝑥 ∈ On → (𝐹‘𝑥) = (𝑔‘(𝐴 ∖ (𝐹 “ 𝑥)))) |
31 | 30 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑥 ∈ On → ((𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) ↔ (𝑔‘(𝐴 ∖ (𝐹 “ 𝑥))) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) |
32 | 12, 31 | syl5ibrcom 246 |
. . . . . . . 8
⊢ ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ (𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅) → (𝑥 ∈ On → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) |
33 | 32 | 3expia 1119 |
. . . . . . 7
⊢ ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) → ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝑥 ∈ On → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥))))) |
34 | 33 | com23 86 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) → (𝑥 ∈ On → ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥))))) |
35 | 34 | ralrimiv 3106 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) → ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) |
36 | 35 | ex 412 |
. . . 4
⊢ (𝐴 ∈ V → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) → ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥))))) |
37 | 15 | tz7.49c 8247 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
38 | 37 | ex 412 |
. . . . 5
⊢ (𝐴 ∈ V → (∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥))) → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴)) |
39 | 18 | f1oen 8716 |
. . . . . . 7
⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → 𝑥 ≈ 𝐴) |
40 | | isnumi 9635 |
. . . . . . 7
⊢ ((𝑥 ∈ On ∧ 𝑥 ≈ 𝐴) → 𝐴 ∈ dom card) |
41 | 39, 40 | sylan2 592 |
. . . . . 6
⊢ ((𝑥 ∈ On ∧ (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) → 𝐴 ∈ dom card) |
42 | 41 | rexlimiva 3209 |
. . . . 5
⊢
(∃𝑥 ∈ On
(𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → 𝐴 ∈ dom card) |
43 | 38, 42 | syl6 35 |
. . . 4
⊢ (𝐴 ∈ V → (∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥))) → 𝐴 ∈ dom card)) |
44 | 36, 43 | syld 47 |
. . 3
⊢ (𝐴 ∈ V → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) → 𝐴 ∈ dom card)) |
45 | 1, 44 | syl 17 |
. 2
⊢ (𝐴 ∈ 𝐶 → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) → 𝐴 ∈ dom card)) |
46 | 45 | exlimdv 1937 |
1
⊢ (𝐴 ∈ 𝐶 → (∃𝑔∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) → 𝐴 ∈ dom card)) |