MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8alem Structured version   Visualization version   GIF version

Theorem dfac8alem 9785
Description: Lemma for dfac8a 9786. If the power set of a set has a choice function, then the set is numerable. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 5-Jan-2013.)
Hypotheses
Ref Expression
dfac8alem.2 𝐹 = recs(𝐺)
dfac8alem.3 𝐺 = (𝑓 ∈ V ↦ (𝑔‘(𝐴 ∖ ran 𝑓)))
Assertion
Ref Expression
dfac8alem (𝐴𝐶 → (∃𝑔𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
Distinct variable groups:   𝑓,𝑔,𝑦,𝐴   𝐶,𝑔   𝑓,𝐹,𝑦
Allowed substitution hints:   𝐶(𝑦,𝑓)   𝐹(𝑔)   𝐺(𝑦,𝑓,𝑔)

Proof of Theorem dfac8alem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3450 . . 3 (𝐴𝐶𝐴 ∈ V)
2 difss 4066 . . . . . . . . . . . 12 (𝐴 ∖ (𝐹𝑥)) ⊆ 𝐴
3 elpw2g 5268 . . . . . . . . . . . 12 (𝐴 ∈ V → ((𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ (𝐹𝑥)) ⊆ 𝐴))
42, 3mpbiri 257 . . . . . . . . . . 11 (𝐴 ∈ V → (𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴)
5 neeq1 3006 . . . . . . . . . . . . 13 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → (𝑦 ≠ ∅ ↔ (𝐴 ∖ (𝐹𝑥)) ≠ ∅))
6 fveq2 6774 . . . . . . . . . . . . . 14 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → (𝑔𝑦) = (𝑔‘(𝐴 ∖ (𝐹𝑥))))
7 id 22 . . . . . . . . . . . . . 14 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → 𝑦 = (𝐴 ∖ (𝐹𝑥)))
86, 7eleq12d 2833 . . . . . . . . . . . . 13 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → ((𝑔𝑦) ∈ 𝑦 ↔ (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
95, 8imbi12d 345 . . . . . . . . . . . 12 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → ((𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ↔ ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))))
109rspcv 3557 . . . . . . . . . . 11 ((𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴 → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))))
114, 10syl 17 . . . . . . . . . 10 (𝐴 ∈ V → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))))
12113imp 1110 . . . . . . . . 9 ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ (𝐴 ∖ (𝐹𝑥)) ≠ ∅) → (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))
13 dfac8alem.2 . . . . . . . . . . . 12 𝐹 = recs(𝐺)
1413tfr2 8229 . . . . . . . . . . 11 (𝑥 ∈ On → (𝐹𝑥) = (𝐺‘(𝐹𝑥)))
1513tfr1 8228 . . . . . . . . . . . . . 14 𝐹 Fn On
16 fnfun 6533 . . . . . . . . . . . . . 14 (𝐹 Fn On → Fun 𝐹)
1715, 16ax-mp 5 . . . . . . . . . . . . 13 Fun 𝐹
18 vex 3436 . . . . . . . . . . . . 13 𝑥 ∈ V
19 resfunexg 7091 . . . . . . . . . . . . 13 ((Fun 𝐹𝑥 ∈ V) → (𝐹𝑥) ∈ V)
2017, 18, 19mp2an 689 . . . . . . . . . . . 12 (𝐹𝑥) ∈ V
21 rneq 5845 . . . . . . . . . . . . . . . 16 (𝑓 = (𝐹𝑥) → ran 𝑓 = ran (𝐹𝑥))
22 df-ima 5602 . . . . . . . . . . . . . . . 16 (𝐹𝑥) = ran (𝐹𝑥)
2321, 22eqtr4di 2796 . . . . . . . . . . . . . . 15 (𝑓 = (𝐹𝑥) → ran 𝑓 = (𝐹𝑥))
2423difeq2d 4057 . . . . . . . . . . . . . 14 (𝑓 = (𝐹𝑥) → (𝐴 ∖ ran 𝑓) = (𝐴 ∖ (𝐹𝑥)))
2524fveq2d 6778 . . . . . . . . . . . . 13 (𝑓 = (𝐹𝑥) → (𝑔‘(𝐴 ∖ ran 𝑓)) = (𝑔‘(𝐴 ∖ (𝐹𝑥))))
26 dfac8alem.3 . . . . . . . . . . . . 13 𝐺 = (𝑓 ∈ V ↦ (𝑔‘(𝐴 ∖ ran 𝑓)))
27 fvex 6787 . . . . . . . . . . . . 13 (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ V
2825, 26, 27fvmpt 6875 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ V → (𝐺‘(𝐹𝑥)) = (𝑔‘(𝐴 ∖ (𝐹𝑥))))
2920, 28ax-mp 5 . . . . . . . . . . 11 (𝐺‘(𝐹𝑥)) = (𝑔‘(𝐴 ∖ (𝐹𝑥)))
3014, 29eqtrdi 2794 . . . . . . . . . 10 (𝑥 ∈ On → (𝐹𝑥) = (𝑔‘(𝐴 ∖ (𝐹𝑥))))
3130eleq1d 2823 . . . . . . . . 9 (𝑥 ∈ On → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) ↔ (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
3212, 31syl5ibrcom 246 . . . . . . . 8 ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ (𝐴 ∖ (𝐹𝑥)) ≠ ∅) → (𝑥 ∈ On → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
33323expia 1120 . . . . . . 7 ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝑥 ∈ On → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))))
3433com23 86 . . . . . 6 ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → (𝑥 ∈ On → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))))
3534ralrimiv 3102 . . . . 5 ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
3635ex 413 . . . 4 (𝐴 ∈ V → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))))
3715tz7.49c 8277 . . . . . 6 ((𝐴 ∈ V ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
3837ex 413 . . . . 5 (𝐴 ∈ V → (∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴))
3918f1oen 8761 . . . . . . 7 ((𝐹𝑥):𝑥1-1-onto𝐴𝑥𝐴)
40 isnumi 9704 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑥𝐴) → 𝐴 ∈ dom card)
4139, 40sylan2 593 . . . . . 6 ((𝑥 ∈ On ∧ (𝐹𝑥):𝑥1-1-onto𝐴) → 𝐴 ∈ dom card)
4241rexlimiva 3210 . . . . 5 (∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴𝐴 ∈ dom card)
4338, 42syl6 35 . . . 4 (𝐴 ∈ V → (∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → 𝐴 ∈ dom card))
4436, 43syld 47 . . 3 (𝐴 ∈ V → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
451, 44syl 17 . 2 (𝐴𝐶 → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
4645exlimdv 1936 1 (𝐴𝐶 → (∃𝑔𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  wss 3887  c0 4256  𝒫 cpw 4533   class class class wbr 5074  cmpt 5157  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  Oncon0 6266  Fun wfun 6427   Fn wfn 6428  1-1-ontowf1o 6432  cfv 6433  recscrecs 8201  cen 8730  cardccrd 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-en 8734  df-card 9697
This theorem is referenced by:  dfac8a  9786
  Copyright terms: Public domain W3C validator