MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8alem Structured version   Visualization version   GIF version

Theorem dfac8alem 9716
Description: Lemma for dfac8a 9717. If the power set of a set has a choice function, then the set is numerable. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 5-Jan-2013.)
Hypotheses
Ref Expression
dfac8alem.2 𝐹 = recs(𝐺)
dfac8alem.3 𝐺 = (𝑓 ∈ V ↦ (𝑔‘(𝐴 ∖ ran 𝑓)))
Assertion
Ref Expression
dfac8alem (𝐴𝐶 → (∃𝑔𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
Distinct variable groups:   𝑓,𝑔,𝑦,𝐴   𝐶,𝑔   𝑓,𝐹,𝑦
Allowed substitution hints:   𝐶(𝑦,𝑓)   𝐹(𝑔)   𝐺(𝑦,𝑓,𝑔)

Proof of Theorem dfac8alem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3440 . . 3 (𝐴𝐶𝐴 ∈ V)
2 difss 4062 . . . . . . . . . . . 12 (𝐴 ∖ (𝐹𝑥)) ⊆ 𝐴
3 elpw2g 5263 . . . . . . . . . . . 12 (𝐴 ∈ V → ((𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ (𝐹𝑥)) ⊆ 𝐴))
42, 3mpbiri 257 . . . . . . . . . . 11 (𝐴 ∈ V → (𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴)
5 neeq1 3005 . . . . . . . . . . . . 13 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → (𝑦 ≠ ∅ ↔ (𝐴 ∖ (𝐹𝑥)) ≠ ∅))
6 fveq2 6756 . . . . . . . . . . . . . 14 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → (𝑔𝑦) = (𝑔‘(𝐴 ∖ (𝐹𝑥))))
7 id 22 . . . . . . . . . . . . . 14 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → 𝑦 = (𝐴 ∖ (𝐹𝑥)))
86, 7eleq12d 2833 . . . . . . . . . . . . 13 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → ((𝑔𝑦) ∈ 𝑦 ↔ (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
95, 8imbi12d 344 . . . . . . . . . . . 12 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → ((𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ↔ ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))))
109rspcv 3547 . . . . . . . . . . 11 ((𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴 → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))))
114, 10syl 17 . . . . . . . . . 10 (𝐴 ∈ V → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))))
12113imp 1109 . . . . . . . . 9 ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ (𝐴 ∖ (𝐹𝑥)) ≠ ∅) → (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))
13 dfac8alem.2 . . . . . . . . . . . 12 𝐹 = recs(𝐺)
1413tfr2 8200 . . . . . . . . . . 11 (𝑥 ∈ On → (𝐹𝑥) = (𝐺‘(𝐹𝑥)))
1513tfr1 8199 . . . . . . . . . . . . . 14 𝐹 Fn On
16 fnfun 6517 . . . . . . . . . . . . . 14 (𝐹 Fn On → Fun 𝐹)
1715, 16ax-mp 5 . . . . . . . . . . . . 13 Fun 𝐹
18 vex 3426 . . . . . . . . . . . . 13 𝑥 ∈ V
19 resfunexg 7073 . . . . . . . . . . . . 13 ((Fun 𝐹𝑥 ∈ V) → (𝐹𝑥) ∈ V)
2017, 18, 19mp2an 688 . . . . . . . . . . . 12 (𝐹𝑥) ∈ V
21 rneq 5834 . . . . . . . . . . . . . . . 16 (𝑓 = (𝐹𝑥) → ran 𝑓 = ran (𝐹𝑥))
22 df-ima 5593 . . . . . . . . . . . . . . . 16 (𝐹𝑥) = ran (𝐹𝑥)
2321, 22eqtr4di 2797 . . . . . . . . . . . . . . 15 (𝑓 = (𝐹𝑥) → ran 𝑓 = (𝐹𝑥))
2423difeq2d 4053 . . . . . . . . . . . . . 14 (𝑓 = (𝐹𝑥) → (𝐴 ∖ ran 𝑓) = (𝐴 ∖ (𝐹𝑥)))
2524fveq2d 6760 . . . . . . . . . . . . 13 (𝑓 = (𝐹𝑥) → (𝑔‘(𝐴 ∖ ran 𝑓)) = (𝑔‘(𝐴 ∖ (𝐹𝑥))))
26 dfac8alem.3 . . . . . . . . . . . . 13 𝐺 = (𝑓 ∈ V ↦ (𝑔‘(𝐴 ∖ ran 𝑓)))
27 fvex 6769 . . . . . . . . . . . . 13 (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ V
2825, 26, 27fvmpt 6857 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ V → (𝐺‘(𝐹𝑥)) = (𝑔‘(𝐴 ∖ (𝐹𝑥))))
2920, 28ax-mp 5 . . . . . . . . . . 11 (𝐺‘(𝐹𝑥)) = (𝑔‘(𝐴 ∖ (𝐹𝑥)))
3014, 29eqtrdi 2795 . . . . . . . . . 10 (𝑥 ∈ On → (𝐹𝑥) = (𝑔‘(𝐴 ∖ (𝐹𝑥))))
3130eleq1d 2823 . . . . . . . . 9 (𝑥 ∈ On → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) ↔ (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
3212, 31syl5ibrcom 246 . . . . . . . 8 ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ (𝐴 ∖ (𝐹𝑥)) ≠ ∅) → (𝑥 ∈ On → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
33323expia 1119 . . . . . . 7 ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝑥 ∈ On → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))))
3433com23 86 . . . . . 6 ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → (𝑥 ∈ On → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))))
3534ralrimiv 3106 . . . . 5 ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
3635ex 412 . . . 4 (𝐴 ∈ V → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))))
3715tz7.49c 8247 . . . . . 6 ((𝐴 ∈ V ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
3837ex 412 . . . . 5 (𝐴 ∈ V → (∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴))
3918f1oen 8716 . . . . . . 7 ((𝐹𝑥):𝑥1-1-onto𝐴𝑥𝐴)
40 isnumi 9635 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑥𝐴) → 𝐴 ∈ dom card)
4139, 40sylan2 592 . . . . . 6 ((𝑥 ∈ On ∧ (𝐹𝑥):𝑥1-1-onto𝐴) → 𝐴 ∈ dom card)
4241rexlimiva 3209 . . . . 5 (∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴𝐴 ∈ dom card)
4338, 42syl6 35 . . . 4 (𝐴 ∈ V → (∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → 𝐴 ∈ dom card))
4436, 43syld 47 . . 3 (𝐴 ∈ V → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
451, 44syl 17 . 2 (𝐴𝐶 → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
4645exlimdv 1937 1 (𝐴𝐶 → (∃𝑔𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  wss 3883  c0 4253  𝒫 cpw 4530   class class class wbr 5070  cmpt 5153  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  Oncon0 6251  Fun wfun 6412   Fn wfn 6413  1-1-ontowf1o 6417  cfv 6418  recscrecs 8172  cen 8688  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-en 8692  df-card 9628
This theorem is referenced by:  dfac8a  9717
  Copyright terms: Public domain W3C validator