MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8alem Structured version   Visualization version   GIF version

Theorem dfac8alem 9529
Description: Lemma for dfac8a 9530. If the power set of a set has a choice function, then the set is numerable. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 5-Jan-2013.)
Hypotheses
Ref Expression
dfac8alem.2 𝐹 = recs(𝐺)
dfac8alem.3 𝐺 = (𝑓 ∈ V ↦ (𝑔‘(𝐴 ∖ ran 𝑓)))
Assertion
Ref Expression
dfac8alem (𝐴𝐶 → (∃𝑔𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
Distinct variable groups:   𝑓,𝑔,𝑦,𝐴   𝐶,𝑔   𝑓,𝐹,𝑦
Allowed substitution hints:   𝐶(𝑦,𝑓)   𝐹(𝑔)   𝐺(𝑦,𝑓,𝑔)

Proof of Theorem dfac8alem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3416 . . 3 (𝐴𝐶𝐴 ∈ V)
2 difss 4022 . . . . . . . . . . . 12 (𝐴 ∖ (𝐹𝑥)) ⊆ 𝐴
3 elpw2g 5212 . . . . . . . . . . . 12 (𝐴 ∈ V → ((𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ (𝐹𝑥)) ⊆ 𝐴))
42, 3mpbiri 261 . . . . . . . . . . 11 (𝐴 ∈ V → (𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴)
5 neeq1 2996 . . . . . . . . . . . . 13 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → (𝑦 ≠ ∅ ↔ (𝐴 ∖ (𝐹𝑥)) ≠ ∅))
6 fveq2 6674 . . . . . . . . . . . . . 14 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → (𝑔𝑦) = (𝑔‘(𝐴 ∖ (𝐹𝑥))))
7 id 22 . . . . . . . . . . . . . 14 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → 𝑦 = (𝐴 ∖ (𝐹𝑥)))
86, 7eleq12d 2827 . . . . . . . . . . . . 13 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → ((𝑔𝑦) ∈ 𝑦 ↔ (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
95, 8imbi12d 348 . . . . . . . . . . . 12 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → ((𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ↔ ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))))
109rspcv 3521 . . . . . . . . . . 11 ((𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴 → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))))
114, 10syl 17 . . . . . . . . . 10 (𝐴 ∈ V → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))))
12113imp 1112 . . . . . . . . 9 ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ (𝐴 ∖ (𝐹𝑥)) ≠ ∅) → (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))
13 dfac8alem.2 . . . . . . . . . . . 12 𝐹 = recs(𝐺)
1413tfr2 8063 . . . . . . . . . . 11 (𝑥 ∈ On → (𝐹𝑥) = (𝐺‘(𝐹𝑥)))
1513tfr1 8062 . . . . . . . . . . . . . 14 𝐹 Fn On
16 fnfun 6438 . . . . . . . . . . . . . 14 (𝐹 Fn On → Fun 𝐹)
1715, 16ax-mp 5 . . . . . . . . . . . . 13 Fun 𝐹
18 vex 3402 . . . . . . . . . . . . 13 𝑥 ∈ V
19 resfunexg 6988 . . . . . . . . . . . . 13 ((Fun 𝐹𝑥 ∈ V) → (𝐹𝑥) ∈ V)
2017, 18, 19mp2an 692 . . . . . . . . . . . 12 (𝐹𝑥) ∈ V
21 rneq 5779 . . . . . . . . . . . . . . . 16 (𝑓 = (𝐹𝑥) → ran 𝑓 = ran (𝐹𝑥))
22 df-ima 5538 . . . . . . . . . . . . . . . 16 (𝐹𝑥) = ran (𝐹𝑥)
2321, 22eqtr4di 2791 . . . . . . . . . . . . . . 15 (𝑓 = (𝐹𝑥) → ran 𝑓 = (𝐹𝑥))
2423difeq2d 4013 . . . . . . . . . . . . . 14 (𝑓 = (𝐹𝑥) → (𝐴 ∖ ran 𝑓) = (𝐴 ∖ (𝐹𝑥)))
2524fveq2d 6678 . . . . . . . . . . . . 13 (𝑓 = (𝐹𝑥) → (𝑔‘(𝐴 ∖ ran 𝑓)) = (𝑔‘(𝐴 ∖ (𝐹𝑥))))
26 dfac8alem.3 . . . . . . . . . . . . 13 𝐺 = (𝑓 ∈ V ↦ (𝑔‘(𝐴 ∖ ran 𝑓)))
27 fvex 6687 . . . . . . . . . . . . 13 (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ V
2825, 26, 27fvmpt 6775 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ V → (𝐺‘(𝐹𝑥)) = (𝑔‘(𝐴 ∖ (𝐹𝑥))))
2920, 28ax-mp 5 . . . . . . . . . . 11 (𝐺‘(𝐹𝑥)) = (𝑔‘(𝐴 ∖ (𝐹𝑥)))
3014, 29eqtrdi 2789 . . . . . . . . . 10 (𝑥 ∈ On → (𝐹𝑥) = (𝑔‘(𝐴 ∖ (𝐹𝑥))))
3130eleq1d 2817 . . . . . . . . 9 (𝑥 ∈ On → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) ↔ (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
3212, 31syl5ibrcom 250 . . . . . . . 8 ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ (𝐴 ∖ (𝐹𝑥)) ≠ ∅) → (𝑥 ∈ On → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
33323expia 1122 . . . . . . 7 ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝑥 ∈ On → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))))
3433com23 86 . . . . . 6 ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → (𝑥 ∈ On → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))))
3534ralrimiv 3095 . . . . 5 ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
3635ex 416 . . . 4 (𝐴 ∈ V → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))))
3715tz7.49c 8111 . . . . . 6 ((𝐴 ∈ V ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
3837ex 416 . . . . 5 (𝐴 ∈ V → (∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴))
3918f1oen 8576 . . . . . . 7 ((𝐹𝑥):𝑥1-1-onto𝐴𝑥𝐴)
40 isnumi 9448 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑥𝐴) → 𝐴 ∈ dom card)
4139, 40sylan2 596 . . . . . 6 ((𝑥 ∈ On ∧ (𝐹𝑥):𝑥1-1-onto𝐴) → 𝐴 ∈ dom card)
4241rexlimiva 3191 . . . . 5 (∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴𝐴 ∈ dom card)
4338, 42syl6 35 . . . 4 (𝐴 ∈ V → (∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → 𝐴 ∈ dom card))
4436, 43syld 47 . . 3 (𝐴 ∈ V → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
451, 44syl 17 . 2 (𝐴𝐶 → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
4645exlimdv 1940 1 (𝐴𝐶 → (∃𝑔𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wex 1786  wcel 2114  wne 2934  wral 3053  wrex 3054  Vcvv 3398  cdif 3840  wss 3843  c0 4211  𝒫 cpw 4488   class class class wbr 5030  cmpt 5110  dom cdm 5525  ran crn 5526  cres 5527  cima 5528  Oncon0 6172  Fun wfun 6333   Fn wfn 6334  1-1-ontowf1o 6338  cfv 6339  recscrecs 8036  cen 8552  cardccrd 9437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-wrecs 7976  df-recs 8037  df-en 8556  df-card 9441
This theorem is referenced by:  dfac8a  9530
  Copyright terms: Public domain W3C validator