MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8alem Structured version   Visualization version   GIF version

Theorem dfac8alem 9923
Description: Lemma for dfac8a 9924. If the power set of a set has a choice function, then the set is numerable. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 5-Jan-2013.)
Hypotheses
Ref Expression
dfac8alem.2 𝐹 = recs(𝐺)
dfac8alem.3 𝐺 = (𝑓 ∈ V ↦ (𝑔‘(𝐴 ∖ ran 𝑓)))
Assertion
Ref Expression
dfac8alem (𝐴𝐶 → (∃𝑔𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
Distinct variable groups:   𝑓,𝑔,𝑦,𝐴   𝐶,𝑔   𝑓,𝐹,𝑦
Allowed substitution hints:   𝐶(𝑦,𝑓)   𝐹(𝑔)   𝐺(𝑦,𝑓,𝑔)

Proof of Theorem dfac8alem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3457 . . 3 (𝐴𝐶𝐴 ∈ V)
2 difss 4087 . . . . . . . . . . . 12 (𝐴 ∖ (𝐹𝑥)) ⊆ 𝐴
3 elpw2g 5272 . . . . . . . . . . . 12 (𝐴 ∈ V → ((𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ (𝐹𝑥)) ⊆ 𝐴))
42, 3mpbiri 258 . . . . . . . . . . 11 (𝐴 ∈ V → (𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴)
5 neeq1 2987 . . . . . . . . . . . . 13 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → (𝑦 ≠ ∅ ↔ (𝐴 ∖ (𝐹𝑥)) ≠ ∅))
6 fveq2 6822 . . . . . . . . . . . . . 14 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → (𝑔𝑦) = (𝑔‘(𝐴 ∖ (𝐹𝑥))))
7 id 22 . . . . . . . . . . . . . 14 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → 𝑦 = (𝐴 ∖ (𝐹𝑥)))
86, 7eleq12d 2822 . . . . . . . . . . . . 13 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → ((𝑔𝑦) ∈ 𝑦 ↔ (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
95, 8imbi12d 344 . . . . . . . . . . . 12 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → ((𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ↔ ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))))
109rspcv 3573 . . . . . . . . . . 11 ((𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴 → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))))
114, 10syl 17 . . . . . . . . . 10 (𝐴 ∈ V → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))))
12113imp 1110 . . . . . . . . 9 ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ (𝐴 ∖ (𝐹𝑥)) ≠ ∅) → (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))
13 dfac8alem.2 . . . . . . . . . . . 12 𝐹 = recs(𝐺)
1413tfr2 8320 . . . . . . . . . . 11 (𝑥 ∈ On → (𝐹𝑥) = (𝐺‘(𝐹𝑥)))
1513tfr1 8319 . . . . . . . . . . . . . 14 𝐹 Fn On
16 fnfun 6582 . . . . . . . . . . . . . 14 (𝐹 Fn On → Fun 𝐹)
1715, 16ax-mp 5 . . . . . . . . . . . . 13 Fun 𝐹
18 vex 3440 . . . . . . . . . . . . 13 𝑥 ∈ V
19 resfunexg 7151 . . . . . . . . . . . . 13 ((Fun 𝐹𝑥 ∈ V) → (𝐹𝑥) ∈ V)
2017, 18, 19mp2an 692 . . . . . . . . . . . 12 (𝐹𝑥) ∈ V
21 rneq 5878 . . . . . . . . . . . . . . . 16 (𝑓 = (𝐹𝑥) → ran 𝑓 = ran (𝐹𝑥))
22 df-ima 5632 . . . . . . . . . . . . . . . 16 (𝐹𝑥) = ran (𝐹𝑥)
2321, 22eqtr4di 2782 . . . . . . . . . . . . . . 15 (𝑓 = (𝐹𝑥) → ran 𝑓 = (𝐹𝑥))
2423difeq2d 4077 . . . . . . . . . . . . . 14 (𝑓 = (𝐹𝑥) → (𝐴 ∖ ran 𝑓) = (𝐴 ∖ (𝐹𝑥)))
2524fveq2d 6826 . . . . . . . . . . . . 13 (𝑓 = (𝐹𝑥) → (𝑔‘(𝐴 ∖ ran 𝑓)) = (𝑔‘(𝐴 ∖ (𝐹𝑥))))
26 dfac8alem.3 . . . . . . . . . . . . 13 𝐺 = (𝑓 ∈ V ↦ (𝑔‘(𝐴 ∖ ran 𝑓)))
27 fvex 6835 . . . . . . . . . . . . 13 (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ V
2825, 26, 27fvmpt 6930 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ V → (𝐺‘(𝐹𝑥)) = (𝑔‘(𝐴 ∖ (𝐹𝑥))))
2920, 28ax-mp 5 . . . . . . . . . . 11 (𝐺‘(𝐹𝑥)) = (𝑔‘(𝐴 ∖ (𝐹𝑥)))
3014, 29eqtrdi 2780 . . . . . . . . . 10 (𝑥 ∈ On → (𝐹𝑥) = (𝑔‘(𝐴 ∖ (𝐹𝑥))))
3130eleq1d 2813 . . . . . . . . 9 (𝑥 ∈ On → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) ↔ (𝑔‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
3212, 31syl5ibrcom 247 . . . . . . . 8 ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ (𝐴 ∖ (𝐹𝑥)) ≠ ∅) → (𝑥 ∈ On → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
33323expia 1121 . . . . . . 7 ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝑥 ∈ On → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))))
3433com23 86 . . . . . 6 ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → (𝑥 ∈ On → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))))
3534ralrimiv 3120 . . . . 5 ((𝐴 ∈ V ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
3635ex 412 . . . 4 (𝐴 ∈ V → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))))
3715tz7.49c 8368 . . . . . 6 ((𝐴 ∈ V ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
3837ex 412 . . . . 5 (𝐴 ∈ V → (∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴))
3918f1oen 8898 . . . . . . 7 ((𝐹𝑥):𝑥1-1-onto𝐴𝑥𝐴)
40 isnumi 9842 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑥𝐴) → 𝐴 ∈ dom card)
4139, 40sylan2 593 . . . . . 6 ((𝑥 ∈ On ∧ (𝐹𝑥):𝑥1-1-onto𝐴) → 𝐴 ∈ dom card)
4241rexlimiva 3122 . . . . 5 (∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴𝐴 ∈ dom card)
4338, 42syl6 35 . . . 4 (𝐴 ∈ V → (∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → 𝐴 ∈ dom card))
4436, 43syld 47 . . 3 (𝐴 ∈ V → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
451, 44syl 17 . 2 (𝐴𝐶 → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
4645exlimdv 1933 1 (𝐴𝐶 → (∃𝑔𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3436  cdif 3900  wss 3903  c0 4284  𝒫 cpw 4551   class class class wbr 5092  cmpt 5173  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  Oncon0 6307  Fun wfun 6476   Fn wfn 6477  1-1-ontowf1o 6481  cfv 6482  recscrecs 8293  cen 8869  cardccrd 9831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-en 8873  df-card 9835
This theorem is referenced by:  dfac8a  9924
  Copyright terms: Public domain W3C validator