| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unifi | Structured version Visualization version GIF version | ||
| Description: The finite union of finite sets is finite. Exercise 13 of [Enderton] p. 144. (Contributed by NM, 22-Aug-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| unifi | ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ∪ 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss3 3926 | . 2 ⊢ (𝐴 ⊆ Fin ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ Fin) | |
| 2 | uniiun 5010 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
| 3 | iunfi 9252 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ Fin) → ∪ 𝑥 ∈ 𝐴 𝑥 ∈ Fin) | |
| 4 | 2, 3 | eqeltrid 2832 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ Fin) → ∪ 𝐴 ∈ Fin) |
| 5 | 1, 4 | sylan2b 594 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ∪ 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3905 ∪ cuni 4861 ∪ ciun 4944 Fincfn 8879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7807 df-en 8880 df-fin 8883 |
| This theorem is referenced by: unifi2 9254 unirnffid 9256 incexc 15762 incexc2 15763 discmp 23301 tsmsxplem1 24056 madefi 27845 oldfi 27846 fpwrelmapffslem 32688 heiborlem1 37793 |
| Copyright terms: Public domain | W3C validator |